Solveeit Logo

Question

Question: The locus of the poles of normal chords of an ellipse is given by...

The locus of the poles of normal chords of an ellipse is given by

A

a6x2+b6y2=(a2b2)2\frac{a^{6}}{x^{2}} + \frac{b^{6}}{y^{2}} = \left( a^{2} - b^{2} \right)^{2}

B

a3x2+b3y2=(a2b2)2\frac{a^{3}}{x^{2}} + \frac{b^{3}}{y^{2}} = \left( a^{2} - b^{2} \right)^{2}

C

a6x2+b6y2=(a2+b2)2\frac{a^{6}}{x^{2}} + \frac{b^{6}}{y^{2}} = \left( a^{2} + b^{2} \right)^{2}

D

a3x2+b3y2=(a2+b2)2\frac{a^{3}}{x^{2}} + \frac{b^{3}}{y^{2}} = \left( a^{2} + b^{2} \right)^{2}

Answer

a6x2+b6y2=(a2b2)2\frac{a^{6}}{x^{2}} + \frac{b^{6}}{y^{2}} = \left( a^{2} - b^{2} \right)^{2}

Explanation

Solution

Let the equation of the ellipse is x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 .....(i)

Let (h, k) be the poles.

Now polar of (h,k) w.r.t the ellipse is given by 1+4816=2\sqrt{1 + \frac{48}{16}} = 2 = 1

If it is a normal to the ellipse then it must be identical with ax sec θ - by cosec θ = a2 – b2 ...(iii)

Hence comparing (ii) and (iii), we get

(h/a2)asecθ=(k/b2)bcosecθ=1(a2b2)\frac{\left( h/a^{2} \right)}{a\sec\theta} = \frac{\left( k/b^{2} \right)}{- b\cos ec\theta} = \frac{1}{\left( a^{2} - b^{2} \right)}⇒ cos θ = a3h(a2b2)\frac{a^{3}}{h\left( a^{2} - b^{2} \right)} and sin θ = b3k(a2b2)\frac{b^{3}}{k\left( a^{2} - b^{2} \right)}

Squaring and adding we get, 1 = 1(a2b2)2(a6h2+b6k2)\frac{1}{\left( a^{2} - b^{2} \right)^{2}}\left( \frac{a^{6}}{h^{2}} + \frac{b^{6}}{k^{2}} \right)∴ Required locus of (h, k) is a6x2+b6y2\frac{a^{6}}{x^{2}} + \frac{b^{6}}{y^{2}}= (a2 – b2)2.