Solveeit Logo

Question

Question: The locus of the points z which satisfy the condition arg \(\left( \frac{z - 1}{z + 1} \right) = \fr...

The locus of the points z which satisfy the condition arg (z1z+1)=π3\left( \frac{z - 1}{z + 1} \right) = \frac{\pi}{3} is

A

A straight line

B

A circle

C

A parabola

D

None of these

Answer

A parabola

Explanation

Solution

Sol. We have z1z+1=x+iy1x+iy+1=(x2+y21)+2iy(x+1)2+y2\frac{z - 1}{z + 1} = \frac{x + iy - 1}{x + iy + 1} = \frac{(x^{2} + y^{2} - 1) + 2iy}{(x + 1)^{2} + y^{2}}

arg

z1z+1=tan12yx2+y21\frac{z - 1}{z + 1} = \tan^{- 1}\frac{2y}{x^{2} + y^{2} - 1}

Hence tan12yx2+y21=π3\tan^{- 1}\frac{2y}{x^{2} + y^{2} - 1} = \frac{\pi}{3}

2yx2+y21=tanπ3=3\frac{2y}{x^{2} + y^{2} - 1} = \tan\frac{\pi}{3} = \sqrt{3}

x2+y21=23yx2+y223y1=0x^{2} + y^{2} - 1 = \frac{2}{\sqrt{3}}y \Rightarrow x^{2} + y^{2} - \frac{2}{\sqrt{3}}y - 1 = 0,

Which is obviously a circle