Solveeit Logo

Question

Question: The locus of the point whose position vector is given by (a + ib)<sup>5</sup> + (b + ia)<sup>5</sup>...

The locus of the point whose position vector is given by (a + ib)5 + (b + ia)5 (where a, b are real parameters) is-

A

y = x

B

y = – x

C

y = mx, m Ī R

D

Not defined

Answer

y = x

Explanation

Solution

Sol. Let ; a = r cos q, b = r sin q

Then (a + ib)5 + (b + ia)5

= r5 {(cos q + i sin q)5 + (sin q + i cos q)5

= r5 [(cos5θ+isin5θ)+{cos(π2θ)+isin(π2θ)}5]\left\lbrack (\cos 5\theta + i\sin 5\theta) + \left\{ \cos\left( \frac{\pi}{2} - \theta \right) + i\sin\left( \frac{\pi}{2} - \theta \right) \right\}^{5} \right\rbrack=r5

[(cos5θ+isin5θ)+cos5(π2θ)+isin5(π2θ)]\left\lbrack (\cos 5\theta + i\sin 5\theta) + \cos 5\left( \frac{\pi}{2} - \theta \right) + i\sin 5\left( \frac{\pi}{2} - \theta \right) \right\rbrack = r5

[(cos5q + i sin 5q) (1 + i)].

This is a complex number whose real and imaginary parts are equal. So locus of such a point will be y = x.