Solveeit Logo

Question

Question: The locus of the point, tangents from which to the rectangular hyperbola x<sup>2</sup> – y<sup>2</su...

The locus of the point, tangents from which to the rectangular hyperbola x2 – y2 = a2 contain an angle of 45° is

A

(x2 + y2) + a2(x2 – y2) = 4a4

B

2(x2 + y2) + 4a2(x2 – y2) = 4a4

C

(x2 + y2) + 4a2(x2 – y2) = 4a4

D

(x2 + y2) + a2(x2 – y2) = a4

Answer

(x2 + y2) + 4a2(x2 – y2) = 4a4

Explanation

Solution

Let y = mx ± m2a2a2\sqrt{m^{2}a^{2} - a^{2}} be two tangents and passing through (h, k). Then

(k – mk)2 = m2a2 – a2 ⇒ m2(h2 – a2) – 2khm + k2 + a2 = 0.

⇒ m1 + m2 = 2khh2a2\frac{2kh}{h^{2} - a^{2}} and m1m2 =k2+a2h2a2\frac{k^{2} + a^{2}}{h^{2} - a^{2}}, and tan450 =m1+m21+m1m2\frac{m_{1} + m_{2}}{1 + m_{1}m_{2}}