Solveeit Logo

Question

Question: The locus of the point of intersection of two tangents to the ellipse \(\frac{x^{2}}{a^{2}} + \frac{...

The locus of the point of intersection of two tangents to the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 which are inclined at angles θ1 and θ2 with major axis such that θ1 + θ2 is constant α is

A

2xy cot α = x2 - y2 + b2 - a2

B

2xy cot α = x2 - y2 + b2 - a2

C

2xy cot α = x2 + y2 + b2 - a2

D

None of these

Answer

2xy cot α = x2 - y2 + b2 - a2

Explanation

Solution

Proceeding as in Q. 186, we get

m1 + m2 = 2x1y1x12a2\frac{2x_{1}y_{1}}{x_{1}^{2} - a^{2}} and m1m2 = y12b2x12a2\frac{y_{1}^{2} - b^{2}}{x_{1}^{2} - a^{2}}.

Given: θ1 + θ2 = constant = α (say)

∴ tan (θ1 + θ2) = tan α

tanθ1+tanθ21tanθ1.tanθ2=tanαorm1+m21m1m2=tanα\frac{\tan\theta_{1} + \tan\theta_{2}}{1 - \tan\theta_{1}.\tan\theta_{2}} = \tan\alpha or\frac{m_{1} + m_{2}}{1 - m_{1}m_{2}} = \tan\alpha

2x1y1/(x12a2)1(y12b2)/(x12a2)tanα\frac{2x_{1}y_{1}/(x_{1}^{2} - a^{2})}{1 - (y_{1}^{2} - b^{2})/(x_{1}^{2} - a^{2})}\tan\alpha or

2x1y1x12y12+b2a2=tanα\frac{2x_{1}y_{1}}{x_{1}^{2} - y_{1}^{2} + b^{2} - a^{2}} = \tan\alpha

2x1y1cotα=x12y12+b2a22x_{1}y_{1}\cot\alpha = x_{1}^{2} - y_{1}^{2} + b^{2} - a^{2}.

Hence, locus of P is 2xy cot α = x2 - y2 + b2 - a2.