Solveeit Logo

Question

Question: The locus of the point of intersection of two normals to the parabola \(x ^ { 2 } = 8 y\) which are...

The locus of the point of intersection of two normals to the parabola x2=8yx ^ { 2 } = 8 y which are at right angles to each other, is

A

x2=2(y6)x ^ { 2 } = 2 ( y - 6 )

B

x2=2(y+6)x ^ { 2 } = 2 ( y + 6 )

C

x2=2(y6)x ^ { 2 } = - 2 ( y - 6 )

D

None of these

Answer

x2=2(y6)x ^ { 2 } = 2 ( y - 6 )

Explanation

Solution

Given parabola is x2=8yx ^ { 2 } = 8 y .....(i)

Let Q(4t2,2t22)Q \left( 4 t _ { 2 } , 2 t _ { 2 } ^ { 2 } \right)be two points on the parabola (i)

Normal at P, Q are y2t12=1t1(x4t1)y - 2 t _ { 1 } ^ { 2 } = - \frac { 1 } { t _ { 1 } } \left( x - 4 t _ { 1 } \right) ......(ii) and

y2t22=1t2(x4t2)y - 2 t _ { 2 } ^ { 2 } = - \frac { 1 } { t _ { 2 } } \left( x - 4 t _ { 2 } \right) ......(iii)

(ii)–(iii) gives 2(t22t12)=x(1t21t1)2 \left( t _ { 2 } ^ { 2 } - t _ { 1 } ^ { 2 } \right) = x \left( \frac { 1 } { t _ { 2 } } - \frac { 1 } { t _ { 1 } } \right) =xt1t2t1t2= x \frac { t _ { 1 } - t _ { 2 } } { t _ { 1 } t _ { 2 } },

x=2t1t2(t2+t1)x = - 2 t _ { 1 } t _ { 2 } \left( t _ { 2 } + t _ { 1 } \right) . ....(iv)

From (ii), y=2t121t1(2t1t2(t2+t1)4t1)y = 2 t _ { 1 } ^ { 2 } - \frac { 1 } { t _ { 1 } } \left( - 2 t _ { 1 } t _ { 2 } \left( t _ { 2 } + t _ { 1 } \right) - 4 t _ { 1 } \right)

y=2t12+2t1t2+2t22+4y = 2 t _ { 1 } ^ { 2 } + 2 t _ { 1 } t _ { 2 } + 2 t _ { 2 } ^ { 2 } + 4 .....(v)

Since normals (ii) and (iii) are at right angles, ∴ t1t2=1t _ { 1 } t _ { 2 } = - 1

∴ From (iv), x=2(t1+t2)x = 2 \left( t _ { 1 } + t _ { 2 } \right) and from (v) =2[t12+t22+1]= 2 \left[ t _ { 1 } ^ { 2 } + t _ { 2 } ^ { 2 } + 1 \right] =2[(t1+t2)22t1t2+1]= 2 \left[ \left( t _ { 1 } + t _ { 2 } \right) ^ { 2 } - 2 t _ { 1 } t _ { 2 } + 1 \right]

⇒ y=2[(t1+t2)2+3= 2 \left[ \left( t _ { 1 } + t _ { 2 } \right) ^ { 2 } + 3 \right.

y=2[x24+3]=x22+6y = 2 \left[ \frac { x ^ { 2 } } { 4 } + 3 \right] = \frac { x ^ { 2 } } { 2 } + 6x2=2(y6)x ^ { 2 } = 2 ( y - 6 ) which is the

required locus.