Solveeit Logo

Question

Mathematics Question on Circle

The locus of the point of intersection of the tangents at the extremeties of a chord of the circle x2+y2=a2x^2+y^2 = a^2 which touches the circle x2+y22ax=0x^2 + y^2 - 2ax = 0 passes through the point

A

(a/2,0)(a/2,0)

B

(0,a/2)(0,a/2)

C

(a,0)(a, 0)

D

(0,0)(0, 0)

Answer

(a/2,0)(a/2,0)

Explanation

Solution

Equation can be rewritten as
(xa)2+y2=a2( x - a)^2 + y^2 = a^2
Any point on the circle is (a+acosθ,asinθ)(a + a \,cos\, \theta, a \,sin\, \theta)
\therefore Equation of tangent at (a+acosθ,asinθ)(a + a \,cos\,\theta, a \,sin\,\theta) is
x(a+acosθ)+y(asinθ)x(a + a \,cos\,\theta) + y(a \,sin\,\theta)
a(x+a+acosθ)=0-a(x + a + a \,cos\,\theta) = 0
axcosθ+aysinθa2(1+cosθ),..(i)\Rightarrow ax\,cos\,\theta + ay \,sin\,\theta - a^2(1 + cos\,\theta)\,\, ,..(i)
Equation of first circle is
x2+y2=a2...(ii)x^2 + y^2 = a^2 ...(ii)
Let E (i)(i) meets the first circle at PP and QQ and the tangents at PP and QQ to the second circle intersected at (h,k)(h, k), then E (i)(i) is the chord of contact of (h,k)(h, k) with respect to the circle (ii)(ii) and thus equation is
hx+kya2=0...(iii)h x + k y - a^2 = 0 \,\,...(iii)
Eqs. (i)(i) and (iii)(iii) represents the same line.
hacosθ=kasinθ=a2a2(1+cosθ)\therefore \frac{h}{a\,cos\,\theta} = \frac{k}{a\,sin\,\theta} = \frac{a^2}{a^2(1 + cos\,\theta)}
ha=cosθ1+cosθ,ka=sinθ1+cosθ\Rightarrow \frac{h}{a} = \frac{cos\,\theta}{1 + cos\,\theta}, \frac{k}{a} = \frac{sin\,\theta}{1 + cos\,\theta}
\Rightarrow (\frac{h}{a})^2 + (\frac{k}{a})^2 = \frac{cos^2\,\theta + sin^\,\theta}{(1 + cos\,\theta)^2}
=14[cos2θ2]2= \frac{1}{4[cos^2 \frac{\theta}{2}]^2}
Then, (a/2a)2+02=14(1+0)2\left(\frac{a/2}{a}\right)^{2} + 0^{2} = \frac{1}{4} \left( 1 +0\right)^{2} 14=14\Rightarrow \frac{1}{4} = \frac{1}{4}
Hence, required point is (a2,0) \left( \frac{a}{2} , 0\right)