Solveeit Logo

Question

Question: The locus of the point of intersection of the tangents to the circle x = r cosq, y = rsinq at points...

The locus of the point of intersection of the tangents to the circle x = r cosq, y = rsinq at points whose parametric angles differ by /3, is-

A

x2 + y2 = 4(23)r24 ( 2 - \sqrt { 3 } ) r ^ { 2 }

B

3(x2 + y2) = 1

C

x2 + y2 = (23)r2( 2 - \sqrt { 3 } ) r ^ { 2 }

D

3(x2 + y2) = 4r2

Answer

3(x2 + y2) = 4r2

Explanation

Solution

Point of intersection R (h, k) is given by

h = , k =

" q – a = π3\frac { \pi } { 3 }

̃ (cosθ+α2)2+(sinθ+α2)2=1\left( \cos \frac { \theta + \alpha } { 2 } \right) ^ { 2 } + \left( \sin \frac { \theta + \alpha } { 2 } \right) ^ { 2 } = 1

(32 hr)2+(32kr)2=1\left( \frac { \sqrt { 3 } } { 2 } \frac { \mathrm {~h} } { \mathrm { r } } \right) ^ { 2 } + \left( \frac { \sqrt { 3 } } { 2 } \frac { \mathrm { k } } { \mathrm { r } } \right) ^ { 2 } = 1