Solveeit Logo

Question

Question: The locus of the point of intersection of the lines \(\sqrt{3}x-y-4\sqrt{3}t=0 {\text{ and}} \sqrt{3...

The locus of the point of intersection of the lines 3xy43t=0 and3tx+ty43=0\sqrt{3}x-y-4\sqrt{3}t=0 {\text{ and}} \sqrt{3}tx+ty-4\sqrt{3}=0 (where t is a parameter) is a hyperbola whose eccentricity is:
(a) 3\sqrt{3}
(b) 22
(c) 23\dfrac{2}{\sqrt{3}}
(d) 43\dfrac{4}{3}

Explanation

Solution

Hint:From the two lines given in the question, take one of the equation of a line and write t in terms of x and y then substitute this value of t in the other equation and then rearrange the expressions in the form of the equation of a hyperbola and then find the eccentricity of the hyperbola.

Complete step-by-step answer:
In the above problem, two equations are given as:
3xy43t=0.........Eq.(1) 3tx+ty43=0.........Eq.(2) \begin{aligned} & \sqrt{3}x-y-4\sqrt{3}t=0.........\text{Eq}\text{.(1)} \\\ & \sqrt{3}tx+ty-4\sqrt{3}=0.........\text{Eq}\text{.(2)} \\\ \end{aligned}
Now, writing the value of t in terms of x and y in eq. (2) as follows:
3tx+ty43=0 t(3x+y)=43 t=433x+y \begin{aligned} & \sqrt{3}tx+ty-4\sqrt{3}=0 \\\ & \Rightarrow t\left( \sqrt{3}x+y \right)=4\sqrt{3} \\\ & \Rightarrow t=\dfrac{4\sqrt{3}}{\sqrt{3}x+y} \\\ \end{aligned}
Substituting the above value of t in eq. (1) we get,
3xy=43(433x+y) (3xy)(3x+y)=48 \begin{aligned} & \sqrt{3}x-y=4\sqrt{3}\left( \dfrac{4\sqrt{3}}{\sqrt{3}x+y} \right) \\\ & \Rightarrow \left( \sqrt{3}x-y \right)\left( \sqrt{3}x+y \right)=48 \\\ \end{aligned}
In the above equation, we will use the identity (ab)(a+b)=a2b2(a – b)(a + b) = a^2 – b^2.
3x2y2=483{{x}^{2}}-{{y}^{2}}=48
Now, rewriting the above equation in the form of a hyperbolax2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1because it is given that locus of the point of intersection of two lines is a hyperbola.
Dividing the above expression by 48 on both the sides we get,
x216y248=1\dfrac{{{x}^{2}}}{16}-\dfrac{{{y}^{2}}}{48}=1
We know that, the eccentricity of a hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 is e2=1+b2a2{{e}^{2}}=1+\dfrac{{{b}^{2}}}{{{a}^{2}}}.
Comparing the two hyperbolas:
x216y248=1\dfrac{{{x}^{2}}}{16}-\dfrac{{{y}^{2}}}{48}=1
x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1
From the above two equations, we get:
a2=16a^2 = 16 and b2=48b^2 = 48
Substituting the values of a2a^2 and b2b^2 in the formula of eccentricity we get,
e2=1+b2a2{{e}^{2}}=1+\dfrac{{{b}^{2}}}{{{a}^{2}}}
e2=1+4816 e2=16+4816 e2=6416 e2=4 e=±2 \begin{aligned} & {{e}^{2}}=1+\dfrac{48}{16} \\\ & \Rightarrow {{e}^{2}}=\dfrac{16+48}{16} \\\ & \Rightarrow {{e}^{2}}=\dfrac{64}{16} \\\ & \Rightarrow {{e}^{2}}=4 \\\ & \Rightarrow e=\pm 2 \\\ \end{aligned}
So, the eccentricity of hyperbola is +2+2 because eccentricity of the hyperbola is always greater than 1.
Hence, the correct option is (b).

Note: You might be thinking how the eccentricity of a hyperbola is greater than 1.
The formula of eccentricity ise=1+b2a2e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}. The ratio of b2b^2 and a2a^2 can never be negative because squares of any number cannot be negative. So, the expression in the square root is always greater than 1. And the square root of a number greater than 1 is always greater than 1.