Solveeit Logo

Question

Question: The locus of the point of intersection of tangents to the hyperbola \(4x^{2} - 9y^{2} = 36\) which m...

The locus of the point of intersection of tangents to the hyperbola 4x29y2=364x^{2} - 9y^{2} = 36 which meet at a constant angle π/4\pi/4, is

A

(x2+y25)2=4(9y24x2+36)(x^{2} + y^{2} - 5)^{2} = 4(9y^{2} - 4x^{2} + 36)

B

(x2+y25)=4(9y24x2+36)(x^{2} + y^{2} - 5) = 4(9y^{2} - 4x^{2} + 36)

C

4(x2+y25)2=(9y24x2+36)4(x^{2} + y^{2} - 5)^{2} = (9y^{2} - 4x^{2} + 36)

D

None of these

Answer

(x2+y25)2=4(9y24x2+36)(x^{2} + y^{2} - 5)^{2} = 4(9y^{2} - 4x^{2} + 36)

Explanation

Solution

Let the point of intersection of tangents be P(x1,y1)P(x_{1},y_{1}). Then the equation of pair of tangents from P(x1,y1)P(x_{1},y_{1}) to the given hyperbola is

(4x29y236)(4x129y1236)=[4x1x9y1y36]2(4x^{2} - 9y^{2} - 36)(4x_{1}^{2} - 9y_{1}^{2} - 36) = \lbrack 4x_{1}x - 9y_{1}y - 36\rbrack^{2}......(i)

From SS1=T2SS_{1} = T^{2} or x2(y12+4)+2x1y1xy+y2(x129)+.....=0x^{2}(y_{1}^{2} + 4) + 2x_{1}y_{1}xy + y^{2}(x_{1}^{2} - 9) + ..... = 0.....(ii)

Since angle between the tangents is π/4\pi/4.

tan(π/4)=2[x12y12(y12+4)(x129)]y12+4+x129\tan(\pi/4) = \frac{2\sqrt{\lbrack x_{1}^{2}y_{1}^{2} - (y_{1}^{2} + 4)(x_{1}^{2} - 9)\rbrack}}{y_{1}^{2} + 4 + x_{1}^{2} - 9}.

Hence locus of P(x1,y1)P(x_{1},y_{1}) is (x2+y25)2=4(9y24x2+36)(x^{2} + y^{2} - 5)^{2} = 4(9y^{2} - 4x^{2} + 36).