Solveeit Logo

Question

Mathematics Question on x-intercepts and y-intercepts

The locus of the point of intersection of lines xcosα+ysinα=ax \cos \, \alpha + y \sin \alpha = a and xsinαycosα=bx \sin \alpha - y \cos \alpha = b (α\alpha is a variable)

A

2(x2+y2)=a2+b22 (x^2 + y^2) = a^2 + b^2

B

x2y2=a2b2x^2 - y^2 = a^2 - b^2

C

x2+y2=a2+b2x^2 + y^2 = a^2 + b^2

D

none of these

Answer

x2+y2=a2+b2x^2 + y^2 = a^2 + b^2

Explanation

Solution

Given : xcosα+ysinα=ax \cos \alpha + y \sin \alpha = a ... (i) and xsinαycosα=bx \sin \alpha - y \cos \alpha = b ... (ii) By squaring equation (i) and (ii) simultaneously we get x2cos2α+y2sin2α+2xysinαcosα=a2x^2 \cos^2 \alpha + y^2 \sin^2 \alpha + 2xy \, \sin \alpha \cos \alpha = a^2 ......(3) x2sin2α+y2cos2α2xysinαcosα=b2x^2 \sin^2 \alpha + y^2 \cos^2 \alpha - 2 xy \sin \alpha \cos \alpha = b^2 .....(4) By adding (3) and (4) we get x2+y2=a2+b2(sin2α+cos2α=1)x^2 + y^2 = a^2 + b^2 \, \, (\because \, \sin^2 \alpha + \cos^2 \alpha = 1 )