Solveeit Logo

Question

Question: The locus of the midpoint of the line segment joining the focus to a moving point on the parabola \(...

The locus of the midpoint of the line segment joining the focus to a moving point on the parabola y2=4axy ^ { 2 } = 4 a xis another parabola with the directrix

A

x=ax = - a

B

x=a2x = - \frac { a } { 2 }

C

x=0x = 0

D

x=a2x = \frac { a } { 2 }

Answer

x=0x = 0

Explanation

Solution

Let M(α,β)M ( \alpha , \beta )be the mid point of PS.

α=at2+a2,β=2at+02\alpha = \frac { a t ^ { 2 } + a } { 2 } , \beta = \frac { 2 a t + 0 } { 2 }

2aα=β2+a22 a \alpha = \beta ^ { 2 } + a ^ { 2 }

∴ The locus is y2=4a2(xa2)=4b(xb),{b=a2}y ^ { 2 } = \frac { 4 a } { 2 } \left( x - \frac { a } { 2 } \right) = 4 b ( x - b ) , \left\{ b = \frac { a } { 2 } \right\}

∴ Directrix is (xb)+b=0( x - b ) + b = 0or x=0x = 0