Solveeit Logo

Question

Question: The locus of the midpoint of the chord of the circle \({{x}^{2}}+{{y}^{2}}-2x-2y-2=0\) which makes a...

The locus of the midpoint of the chord of the circle x2+y22x2y2=0{{x}^{2}}+{{y}^{2}}-2x-2y-2=0 which makes an angle of 120120{}^\circ at the centre is –
(a) x2+y22x2y+1=0{{x}^{2}}+{{y}^{2}}-2x-2y+1=0
(b) x2+y2+x+y1=0{{x}^{2}}+{{y}^{2}}+x+y-1=0
(c) x2+y22x2y1=0{{x}^{2}}+{{y}^{2}}-2x-2y-1=0
(d) None of these

Explanation

Solution

This question involves mid-point theorem, parametric points of circle and concept of locus. First of all, we assume a chord in the form of parametric points and then by mid-point theorem, get the midpoint of the chord. Let us assume mid-point as and solve for the equation in terms of hh and kk and then replace hh with xx and kk withyy.
We will use following properties and formula –
(i) If α\alpha is the angle between two lines of slope m1{{m}_{1}} andm2{{m}_{2}}, then
tanα=m1m21+m1m2\tan \alpha =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}
(ii) Mid-point Theorem: If MM is midpoint of line segmentABAB, where AA is (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and BB is(x2,y2)\left( {{x}_{2}},{{y}_{2}} \right), and let MM be (x,y)\left( x,y \right). Then
x=x1+x22x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2} andy=y1+y22y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}.

Complete step-by-step answer:
Now, we have been given that the equation of circle is x2+y22x2y2=0{{x}^{2}}+{{y}^{2}}-2x-2y-2=0
(x22x+1)+(y22y+1)22=0\Rightarrow \left( {{x}^{2}}-2x+1 \right)+\left( {{y}^{2}}-2y+1 \right)-2-2=0
(x1)2+(y1)2=4\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=4 … (i)
(x1)2+(y1)2=22\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}={{2}^{2}}
So, the centre is (1,1)\left( 1,1 \right) and radius is 22.
Thus, the circle can be represented as –

As we know that if the equation of a circle is(xα)2+(yβ)2=r2{{\left( x-\alpha \right)}^{2}}+{{\left( y-\beta \right)}^{2}}={{r}^{2}}, then parametric point PP is assumed as P(θ)P\left( \theta \right).
x1=(α+rcosθ){{x}_{1}}=\left( \alpha +r\cos \theta \right) andy1=(β+rsinθ){{y}_{1}}=\left( \beta +r\sin \theta \right)
Let us assume ABABin the parametric form of points A(θ)A\left( \theta \right) andB(φ)B\left( \varphi \right). So, AA is (1+2cosθ,1+2sinθ)\left( 1+2\cos \theta ,1+2\sin \theta \right) and BB is(1+2cosφ,1+2sinφ)\left( 1+2\cos \varphi ,1+2\sin \varphi \right).
As we know that, slope of line joining two points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and(x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) =(y2y1)(x2x1)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}.
So, slope of line OAOA joining points O(0,0)O\left( 0,0 \right) and A(1+2cosθ,1+2sinθ)A\left( 1+2\cos \theta ,1+2\sin \theta \right) =(1+2sinθ)1(1+2cosθ)1=\dfrac{\left( 1+2\sin \theta \right)-1}{\left( 1+2\cos \theta \right)-1}
mOA=tanθ\Rightarrow {{m}_{OA}}=\tan \theta
And, slope of line OBOB joining O(0,0)O\left( 0,0 \right) and B(1+2cosφ,1+2sinφ)B\left( 1+2\cos \varphi ,1+2\sin \varphi \right) =(1+2sinφ)1(1+2cosφ)1=\dfrac{\left( 1+2\sin \varphi \right)-1}{\left( 1+2\cos \varphi \right)-1}
mOB=tanφ\Rightarrow {{m}_{OB}}=\tan \varphi
As we know that, if α\alpha is the angle between two lines of slope m1{{m}_{1}} andm2{{m}_{2}}, then
tanα=m1m21+m1m2\tan \alpha =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} .
Now according to the question, angle between line OAOA and OBOB is
tan(120)=mOAmOB1+mOA.mOB\tan \left( 120{}^\circ \right)=\dfrac{{{m}_{OA}}-{{m}_{OB}}}{1+{{m}_{OA}}.{{m}_{OB}}}
tan(120)=tanθtanφ1+tanθ.tanφ\Rightarrow \tan \left( 120{}^\circ \right)=\dfrac{\tan \theta -\tan \varphi }{1+\tan \theta .\tan \varphi }
tan(120)=tan(θφ)\Rightarrow \tan \left( 120{}^\circ \right)=\tan \left( \theta -\varphi \right)
120=(θφ)\Rightarrow 120{}^\circ =\left( \theta -\varphi \right) … (iii)
Now, as we know that, if M(x,y)M\left( x,y \right) is midpoint of line segmentABAB, where AA is (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and BB is(x2,y2)\left( {{x}_{2}},{{y}_{2}} \right), then
x=x1+x22x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2} andy=y1+y22y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}.
Let midpoint of the chord ABAB is M(h,k)M\left( h,k \right) and AA is (1+2cosθ,1+2sinθ)\left( 1+2\cos \theta ,1+2\sin \theta \right) and BB is(1+2cosφ,1+2sinφ)\left( 1+2\cos \varphi ,1+2\sin \varphi \right).
h=(1+2cosθ)+(1+2cosφ)2h=\dfrac{\left( 1+2\cos \theta \right)+\left( 1+2\cos \varphi \right)}{2}
2h=2+2(cosθ+cosφ)\Rightarrow 2h=2+2\left( \cos \theta +\cos \varphi \right)
h1=cosθ+cosφ\Rightarrow h-1=\cos \theta +\cos \varphi
(h1)2=(cosθ+cosφ)2\Rightarrow {{\left( h-1 \right)}^{2}}={{\left( \cos \theta +\cos \varphi \right)}^{2}} … (iii)
And, k=(1+2sinθ)+(1+2sinφ)2k=\dfrac{\left( 1+2\sin \theta \right)+\left( 1+2\sin \varphi \right)}{2}
2k=2+2(sinθ+sinφ)\Rightarrow 2k=2+2\left( \sin \theta +\sin \varphi \right)
k1=sinθ+sinφ\Rightarrow k-1=\sin \theta +\sin \varphi
(k1)2=(sinθ+sinφ)2\Rightarrow {{\left( k-1 \right)}^{2}}={{\left( \sin \theta +\sin \varphi \right)}^{2}} … (iv)
By adding equation (iii) and (iv), we get
(h1)2+(k1)2=cos2θ+cos2φ+2cosθcosφ+sin2θ+sin2φ+2sinθsinφ\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}={{\cos }^{2}}\theta +{{\cos }^{2}}\varphi +2\cos \theta \cos \varphi +{{\sin }^{2}}\theta +{{\sin }^{2}}\varphi +2\sin \theta \sin \varphi
cos2θ+sin2θ=1\because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 and cosθ1.cosθ2+sinθ1.sinθ2=cos(θ1θ2)\cos {{\theta }_{1}}.\cos {{\theta }_{2}}+\sin {{\theta }_{1}}.\sin {{\theta }_{2}}=\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)
(h1)2+(k1)2=2+2cos(θφ)\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=2+2\cos \left( \theta -\varphi \right)
As we know from equation (iii), (θφ)=120\left( \theta -\varphi \right)=120{}^\circ , so we have
(h1)2+(k1)2=2+2cos(120)\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=2+2\cos \left( 120{}^\circ \right)
(h1)2+(k1)2=2+2(12)\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=2+2\left( \dfrac{-1}{2} \right)
(h1)2+(k1)2=1\Rightarrow {{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}=1
Now by replacing hxh\to x andkyk\to y, we have
(x1)2+(y1)2=1\Rightarrow {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=1
x22x+1+y22y+1=1\Rightarrow {{x}^{2}}-2x+1+{{y}^{2}}-2y+1=1
x2+y22x2y+1=0\Rightarrow {{x}^{2}}+{{y}^{2}}-2x-2y+1=0

So, the locus of the midpoint of the chord is x2+y22x2y+1=0{{x}^{2}}+{{y}^{2}}-2x-2y+1=0.

So, the correct answer is “Option A”.

Note: (i) In this question, students should take care of the angle between two lines formula,
tanα=m1m21+m1m2\tan \alpha =\dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}}
Don’t interchange the two signs; else it will make the whole question wrong.

(ii) Students should take care of calculation mistakes. In options, there is only change in signs. So, take care of signs properly.