Solveeit Logo

Question

Question: The locus of the middle points of those chords of the circle \(x ^ { 2 } + y ^ { 2 } = 4\) which sub...

The locus of the middle points of those chords of the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 which subtend a right angle at the origin is

A

x2+y22x2y=0x ^ { 2 } + y ^ { 2 } - 2 x - 2 y = 0

B

x2+y2=4x ^ { 2 } + y ^ { 2 } = 4

C

x2+y2=2x ^ { 2 } + y ^ { 2 } = 2

D

(x1)2+(y2)2=5( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 5

Answer

x2+y2=2x ^ { 2 } + y ^ { 2 } = 2

Explanation

Solution

Let the mid-point of chord is (h, k). Also radius of circle is 2. Therefore

OCOB=cos45h2+k22=12h2+k2=2\frac { O C } { O B } = \cos 45 ^ { \circ } \Rightarrow \frac { \sqrt { h ^ { 2 } + k ^ { 2 } } } { 2 } = \frac { 1 } { \sqrt { 2 } } \Rightarrow h ^ { 2 } + k ^ { 2 } = 2

Hence locus is x2+y2=2x ^ { 2 } + y ^ { 2 } = 2