Solveeit Logo

Question

Question: The locus of the middle point of the intercept of the tangents drawn from an external point to the e...

The locus of the middle point of the intercept of the tangents drawn from an external point to the ellipse x2 + 2y2 = 2 between the co-ordinates axes, is

A

1x2+12y2\frac{1}{x^{2}} + \frac{1}{2y^{2}} = 1

B

14x2+12y2\frac{1}{4x^{2}} + \frac{1}{2y^{2}} = 1

C

12x2+14y2\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1

D

12x2+1y2\frac{1}{2x^{2}} + \frac{1}{y^{2}} = 1

Answer

12x2+14y2\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1

Explanation

Solution

Let the point of contact be

R ≡ (2\sqrt{2} cos θ, sin θ)

Equation of tangent AB is x2\frac{x}{\sqrt{2}} cos θ + y sin θ = 1

⇒ A ≡ (2\sqrt{2}sec θ, 0); B ≡ (0, cosec θ)

Let the middle point Q of AB be (h, k)

⇒ h = secθ2\frac{\sec\theta}{\sqrt{2}}, k = cosecθ2\frac{\cos ec\theta}{2} ⇒ cos θ = 1h2\frac{1}{h\sqrt{2}}, sin θ = 12k\frac{1}{2k}

12h2+14kh2\frac{1}{2h^{2}} + \frac{1}{4kh2} =1,

∴Required locus is 12x2+14y2\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1.

Trick: The locus of mid-points of the portion of tangents to the ellipse x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 intercepted between axes is

a2 y2 + b2 x2 = 4x2 y2

i.e., a24x2+b242\frac{a^{2}}{4x^{2}} + \frac{b^{2}}{4^{2}} = 1 or 12x2+14y2\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1.