Solveeit Logo

Question

Question: The locus of the middle point of the intercept of the tangents drawn from an external point to the e...

The locus of the middle point of the intercept of the tangents drawn from an external point to the ellipse x2 + 2y2 = 2 between the coordinates axes, is-

A

1x2\frac{1}{x^{2}}+ 12y2\frac{1}{2y^{2}}= 1

B

14x2\frac{1}{4x^{2}}+ 12y2\frac{1}{2y^{2}}= 1

C

12x2\frac{1}{2x^{2}}+ 14y2\frac{1}{4y^{2}}= 1

D

12x2\frac{1}{2x^{2}}+ 1y2\frac{1}{y^{2}}= 1

Answer

12x2\frac{1}{2x^{2}}+ 14y2\frac{1}{4y^{2}}= 1

Explanation

Solution

x22+y21=1\frac{x^{2}}{2} + \frac{y^{2}}{1} = 1 … (1)

\ Eqn. of tangent AB at point P

̃x2\frac{x}{\sqrt{2}}cos q +y1\frac{y}{1}sinq =1

̃ A(2\sqrt{2}sec q, 0) & B (0, cosec q) Let M is the middle point,

\ M (h = 2secθ+02\frac{\sqrt{2}\sec\theta + 0}{2}, k = 0+cosecθ2\frac{0 + \text{cosec}\theta}{2})

̃ cos q = 1h2\frac{1}{h\sqrt{2}} & sin q = 12k\frac{1}{2k}

̃ cos2 q + sin2q = 1 ̃ 12x2\frac{1}{2x^{2}}+14y2\frac{1}{4y^{2}}= 1