Solveeit Logo

Question

Question: The locus of the middle point of the intercept of the tangents drawn from an external point to the e...

The locus of the middle point of the intercept of the tangents drawn from an external point to the ellipse x2+2y2=2x^{2} + 2y^{2} = 2between the coordinate axes, is

A

1x2+12y2=1\frac{1}{x^{2}} + \frac{1}{2y^{2}} = 1

B

14x2+12y2=1\frac{1}{4x^{2}} + \frac{1}{2y^{2}} = 1

C

12x2+14y2=1\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1

D

12x2+1y2=1\frac{1}{2x^{2}} + \frac{1}{y^{2}} = 1

Answer

12x2+14y2=1\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1

Explanation

Solution

Let the point of contact be R(2cosθ,sinθ)R \equiv (\sqrt{2}\cos\theta,\sin\theta)

Equation of tangent ABABis x2cosθ+ysinθ=1\frac{x}{\sqrt{2}}\cos\theta + y\sin\theta = 1

A(2secθ,0);B(0,cosesθ)A \equiv (\sqrt{2}\sec\theta,0);B \equiv (0,\text{coses}\theta) Let the middle point QQof AB be (h, k).

h=secθ2,k=cosecθ2h = \frac{\sec\theta}{\sqrt{2}},k = \frac{\cos ⥂ ec\theta}{2}cosθ=1h2,sinθ=12k\cos\theta = \frac{1}{h\sqrt{2}},\sin\theta = \frac{1}{2k}

12h2+14k2=1\frac{1}{2h^{2}} + \frac{1}{4k^{2}} = 1

Thus required locus is 12x2+14y2=1\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1