Solveeit Logo

Question

Mathematics Question on Circle

The locus of the mid points of the chords of the circle C1:(x4)2+(y5)2=4C_1:(x-4)^2+(y-5)^2=4 which subtend an angle θi\theta_i at the centre of the circle C1C_1, is a circle of radius rir_i If θ1=π3,θ3=2π3\theta_1=\frac{\pi}{3}, \theta_3=\frac{2 \pi}{3} and r12=r22+r32r_1^2=r_2^2+r_3^2, then θ2\theta_2 is equal to

A

π2\frac{\pi}{2}

B

π4\frac{\pi}{4}

C

π6\frac{\pi}{6}

D

3π4\frac{3 \pi}{4}

Answer

π2\frac{\pi}{2}

Explanation

Solution

The correct answer is (A) : π2\frac{\pi}{2}

In △CPB

Triangle in Circle

cos2θ​=2PC​⇒PC=2cos2θ​
⇒(h−4)2+(k−5)2=4cos22θ​
Now (x−4)2+(y−5)2=(2cos2θ​)2
⇒r1​=2cos6π​=3​
r2​=2cos2θ2​​
r3​=2cos3π​=1
⇒r12​=r22​+r32​
⇒3=4cos22θ2​​+1
⇒4cos22θ2​​=2
⇒cos22θ2​​=21​
⇒θ2​=2π​