Solveeit Logo

Question

Mathematics Question on circle

The locus of the mid-points of the chords of the circle x2+y2+2x2y2=0x^2 + y^2 + 2x - 2y - 2 = 0 which make an angle of 9090� at the centre is

A

x2+y22x2y=0x^2 + y^2 - 2x - 2y = 0

B

x2+y22x+2y=0x^2 + y^2 - 2x + 2y = 0

C

x2+y2+2x2y=0x^2 + y^2 + 2x - 2y = 0

D

x2+y2+2x2y1=0x^2 + y^2 + 2x - 2y - 1=0

Answer

x2+y2+2x2y=0x^2 + y^2 + 2x - 2y = 0

Explanation

Solution

Given, equation of circle is
x2+y2+2x2y2=0x^{2}+y^{2}+2 x-2 y-2=0
(x+1)2+(y1)2=4\Rightarrow (x+1)^{2}+(y-1)^{2}=4
\therefore Centre (1,1)(-1,1) and radius =2=2
Let (h,k)(h, k) be the mid-point of chord.

From figure,
OP=(h+1)2+(k1)2O P=\sqrt{(h+1)^{2}+(k-1)^{2}}
In OAP\triangle O A P,
sin45=OPOA\sin 45^{\circ}=\frac{O P}{O A}
12=(h+1)2+(k1)22\Rightarrow \frac{1}{\sqrt{2}}=\frac{\sqrt{(h+1)^{2}+(k-1)^{2}}}{2}
On squaring both sides, we get
(h+1)2+(k1)2=2(h+1)^{2}+(k-1)^{2}=2
h2+k2+2h2k=0\Rightarrow h^{2}+k^{2}+2 h-2 k=0
\therefore Locus of PP will be
x2+y2+2x2y=0x^{2}+y^{2}+2 x-2 y=0