Solveeit Logo

Question

Question: The locus of the mid-points of the chords of the circle \(x^{2} + y^{2} = 16\) which are tangent to ...

The locus of the mid-points of the chords of the circle x2+y2=16x^{2} + y^{2} = 16 which are tangent to the hyperbola 9x216y2=1449x^{2} - 16y^{2} = 144 is

A

(x2+y2)2=16x29y2(x^{2} + y^{2})^{2} = 16x^{2} - 9y^{2}

B

(x2+y2)2=9x216y2(x^{2} + y^{2})^{2} = 9x^{2} - 16y^{2}

C

(x2y2)2=16x29y2(x^{2} - y^{2})^{2} = 16x^{2} - 9y^{2}

D

None of these

Answer

(x2+y2)2=16x29y2(x^{2} + y^{2})^{2} = 16x^{2} - 9y^{2}

Explanation

Solution

The given hyperbola is x216y29=1\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 ……(i)

Any tangent to (i) is y=mx+16m29y = mx + \sqrt{16m^{2} - 9}

……(ii)

Let (x1,y1)(x_{1},y_{1}) be the mid point of the chord of the circle x2+y2=16x^{2} + y^{2} = 16

Then equation of the chord is T=S1T = S_{1} i.e.,

xx1+yy1(x12+y12)=0xx_{1} + yy_{1} - (x_{1}^{2} + y_{1}^{2}) = 0 ……(iii)

Since (ii) and (iii) represent the same line.

\therefore mx1=1y1=16m29(x12+y12)\frac{m}{x_{1}} = \frac{- 1}{y_{1}} = \frac{\sqrt{16m^{2} - 9}}{- (x_{1}^{2} + y_{1}^{2})}

m=x1y1m = - \frac{x_{1}}{y_{1}} and (x12+y12)2=y12(16m29)(x_{1}^{2} + y_{1}^{2})^{2} = y_{1}^{2}(16m^{2} - 9)

(x12+y12)2=16.x12y12y129y12(x_{1}^{2} + y_{1}^{2})^{2} = 16.\frac{x_{1}^{2}}{y_{1}^{2}}y_{1}^{2} - 9y_{1}^{2} = 16x129y1216x_{1}^{2} - 9y_{1}^{2}

\therefore Locus of (x1,y1)(x_{1},y_{1}) is (x2+y2)2=16x29y2(x^{2} + y^{2})^{2} = 16x^{2} - 9y^{2}.