Solveeit Logo

Question

Question: The locus of the mid-points of the chord passing through a fixed point (\(\alpha \),\(\beta \)) of t...

The locus of the mid-points of the chord passing through a fixed point (α\alpha ,β\beta ) of the hyperbola x2a2y2b2=1\dfrac{{x_{}^2}}{{a_{}^2}} - \dfrac{{y_{}^2}}{{b_{}^2}} = 1 is a hyperbola whose centre is
a) (α3,β3)\left( {\dfrac{\alpha }{3},\dfrac{\beta }{3}} \right)
b) (α,β)(\alpha ,\beta )
c) (α5,β5)\left( {\dfrac{\alpha }{5},\dfrac{\beta }{5}} \right)
d) (α2,β2)\left( {\dfrac{\alpha }{2},\dfrac{\beta }{2}} \right)

Explanation

Solution

First we assume the locus of the middle point of the hyperbola and we use the formula for the equation of the hyperbola.
Then we do some simplification and we get the answer.

Formula used: Equation of chord of hyperbola, xx1a2yy1b2=x12a2y2b2\dfrac{{x{x_1}}}{{a_{}^2}} - \dfrac{{y{y_1}}}{{b_{}^2}} = \dfrac{{x_1^2}}{{a_{}^2}} - \dfrac{{y_{}^2}}{{b_{}^2}}

Complete step-by-step answer:
Let us assume that the locus of the middle point of the chord of the hyperbola is (h,k)\left( {h,k} \right)
By applying the formula of equation of chord of hyperbola and putting the values of x1=h{x_1} = h and y1=k{y_1} = k we get-
xha2ykb2=h2a2k2b2\dfrac{{xh}}{{a_{}^2}} - \dfrac{{yk}}{{b_{}^2}} = \dfrac{{h_{}^2}}{{a_{}^2}} - \dfrac{{k_{}^2}}{{b_{}^2}}
Moving the terms to the left hand side for making it zero we get,
xha2ykb2h2a2+k2b2=0\dfrac{{xh}}{{a_{}^2}} - \dfrac{{yk}}{{b_{}^2}} - \dfrac{{h_{}^2}}{{a_{}^2}} + \dfrac{{k_{}^2}}{{b_{}^2}} = 0
On multiplying (-) sign, we can write it as
h2a2xha2k2b2+ykb2=0\dfrac{{h_{}^2}}{{a_{}^2}} - \dfrac{{xh}}{{a_{}^2}} - \dfrac{{k_{}^2}}{{b_{}^2}} + \dfrac{{yk}}{{b_{}^2}} = 0
Now taking common terms of a2{a^2} and b2{b^2} we get,
1a2(h2hx)1b2(k2ky)=0....(1)\dfrac{1}{{a_{}^2}}(h_{}^2 - hx) - \dfrac{1}{{b_{}^2}}(k_{}^2 - ky) = 0....\left( 1 \right)
Now we will make the equation in whole square format
We have to add and sub x24a2\dfrac{{x_{}^2}}{{4a_{}^2}} and y24b2\dfrac{{y_{}^2}}{{4b_{}^2}} we get,
1a2[(h22.h.x2+x24)x24a2]1b2[(k22.k.y2+y24)+y24b2]=0\dfrac{1}{{a_{}^2}}\left[ {\left( {h_{}^2 - 2.h.\dfrac{x}{2} + \dfrac{{x_{}^2}}{4}} \right) - \dfrac{{x_{}^2}}{{4a_{}^2}}} \right] - \dfrac{1}{{b_{}^2}}\left[ {\left( {k_{}^2 - 2.k.\dfrac{y}{2} + \dfrac{{y_{}^2}}{4}} \right) + \dfrac{{y_{}^2}}{{4b_{}^2}}} \right] = 0
So the above equation turns into the formula of (ab)2=a22ab+b2(a - b)_{}^2 = a_{}^2 - 2ab + b_{}^2
1a2(hx2)2x24a21b2(ky2)2+y24b2=0\dfrac{1}{{a_{}^2}}\left( {h - \dfrac{x}{2}} \right)_{}^2 - \dfrac{{x_{}^2}}{{4a_{}^2}} - \dfrac{1}{{b_{}^2}}\left( {k_{}^{} - \dfrac{y}{2}} \right)_{}^2 + \dfrac{{y_{}^2}}{{4b_{}^2}} = 0
We can write xx and yy term as in RHS,
1a2(hx2)21b2(ky2)2=x24a2y24b2\dfrac{1}{{a_{}^2}}\left( {h - \dfrac{x}{2}} \right)_{}^2 - \dfrac{1}{{b_{}^2}}\left( {k - \dfrac{y}{2}} \right)_{}^2 = \dfrac{{x_{}^2}}{{4a_{}^2}} - \dfrac{{y_{}^2}}{{4b_{}^2}}
Taking 14\dfrac{1}{4} as common from the right side we get-
1a2(hx2)21b2(ky2)2=14(x2a2y2b2)....(2)\dfrac{1}{{a_{}^2}}\left( {h - \dfrac{x}{2}} \right)_{}^2 - \dfrac{1}{{b_{}^2}}\left( {k_{}^{} - \dfrac{y}{2}} \right)_{}^2 = \dfrac{1}{4}\left( {\dfrac{{x_{}^2}}{{a_{}^2}} - \dfrac{{y_{}^2}}{{b_{}^2}}} \right)....\left( 2 \right)
Now we have to put the values of (α,β)\left( {\alpha ,\beta } \right) in place of (h,k)\left( {h,k} \right) in the given equation (1)\left( 1 \right)
Since the chord passes through this fixed point of the hyperbola so we can write
1a2(α2αx)1b2(β2βy)=0\dfrac{1}{{a_{}^2}}(\alpha _{}^2 - \alpha x) - \dfrac{1}{{b_{}^2}}(\beta _{}^2 - \beta y) = 0
From here we get that x=αx = \alpha and y=βy = \beta
Putting this value in equation (2)\left( 2 \right) we get
1a2(hα2)21b2(kβ2)2=14(α2a2β2b2)\dfrac{1}{{a_{}^2}}\left( {h - \dfrac{\alpha }{2}} \right)_{}^2 - \dfrac{1}{{b_{}^2}}\left( {k_{}^{} - \dfrac{\beta }{2}} \right)_{}^2 = \dfrac{1}{4}\left( {\dfrac{{\alpha _{}^2}}{{a_{}^2}} - \dfrac{{\beta _{}^2}}{{b_{}^2}}} \right)
So this is an equation of hyperbola and now converting (h,k)\left( {h,k} \right) into (x,y)\left( {x,y} \right) we get-
1a2(xα2)21b2(yβ2)2=14(α2a2β2b2)\dfrac{1}{{a_{}^2}}\left( {x - \dfrac{\alpha }{2}} \right)_{}^2 - \dfrac{1}{{b_{}^2}}\left( {y - \dfrac{\beta }{2}} \right)_{}^2 = \dfrac{1}{4}\left( {\dfrac{{\alpha _{}^2}}{{a_{}^2}} - \dfrac{{\beta _{}^2}}{{b_{}^2}}} \right)
Here we can write,
Centre of coordinates of the hyperbola is (α2,β2)\left( {\dfrac{\alpha }{2},\dfrac{\beta }{2}} \right)

Therefore the correct option is d.

Note: The centre of hyperbola gets intersected by two lines and the tangent to the centre is called asymptotes of the hyperbola.
The value of x2a2y2b2=1\dfrac{{x_{}^2}}{{a_{}^2}} - \dfrac{{y_{}^2}}{{b_{}^2}} = 1 can be positive, negative or zero, and it depend on the point where it lies that is within, on or outside of the hyperbola.