Solveeit Logo

Question

Question: The locus of the mid-point of those chord of the circle \({{x}^{2}}+{{y}^{2}}=4\) which subtend a ri...

The locus of the mid-point of those chord of the circle x2+y2=4{{x}^{2}}+{{y}^{2}}=4 which subtend a right angle at the origin is –

(a) x2+y22x2y=0{{x}^{2}}+{{y}^{2}}-2x-2y=0
(b) x2+y2=4{{x}^{2}}+{{y}^{2}}=4
(c) x2+y2=2{{x}^{2}}+{{y}^{2}}=2
(d) (x1)2+(y1)2=5{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=5

Explanation

Solution

This question is based on concept of locus and property of chord of circle. First of all, we assume the coordinate of the midpoint of the chord is(h,k)\left( h,k \right). Let the chord is ABAB and the parametric points AA and BB are (2cosθ,2sinθ)\left( 2\cos \theta ,2\sin \theta \right) and (2sinφ,2cosφ)\left( 2\sin \varphi ,2\cos \varphi \right) respectively. Now using mid-point theorem and perpendicular formula, we solve for locus of(h,k)\left( h,k \right). By solving equation, we eliminate parametric variables and at last replace hh with xx and kk withyy.
(i) Mid-point Theorem: If MM is midpoint of line segmentABAB, where AA is (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and BB is (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right), and let MM be (x,y)\left( x,y \right). Then
x=x1+x22x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2} and y=y1+y22y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}.
(ii) Perpendicular formula: If two lines of slope m1{{m}_{1}} and m2{{m}_{2}} are perpendicular to each other, then
m1×m2=1{{m}_{1}}\times {{m}_{2}}=-1

Complete step-by-step answer:
Now, getting started with the solution, let’s write the given data.
Given equation of circle is x2+y2=4{{x}^{2}}+{{y}^{2}}=4 … (i)
Centre is (0,0)\left( 0,0 \right) and radius =2=2
So, the circle can be represented as –

Let ABAB is the chord of a circle joining parametric points A(θ)A\left( \theta \right) andB(φ)B\left( \varphi \right). So, AA is (2cosθ,2sinθ)\left( 2\cos \theta ,2\sin \theta \right) and BB is(2cosφ,2sinφ)\left( 2\cos \varphi ,2\sin \varphi \right).
As we know that, slope of line joining two points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) =(y2y1)(x2x1)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}.
So, slope of line OAOA joining points O(0,0)O\left( 0,0 \right) and A(2cosθ,2sinθ)A\left( 2\cos \theta ,2\sin \theta \right) =(2sinθ0)(2cosθ0)=\dfrac{\left( 2\sin \theta -0 \right)}{\left( 2\cos \theta -0 \right)}
mOA=tanθ\Rightarrow {{m}_{OA}}=\tan \theta
And, slope of line OBOB joining O(0,0)O\left( 0,0 \right) and B(2cosφ,2sinφ)B\left( 2\cos \varphi ,2\sin \varphi \right) ==(2sinφ0)(2cosφ0)==\dfrac{\left( 2\sin \varphi -0 \right)}{\left( 2\cos \varphi -0 \right)}
mOB=tanφ\Rightarrow {{m}_{OB}}=\tan \varphi
Now, as we know that multiplication of two perpendicular lines of slope m1{{m}_{1}} and m2{{m}_{2}} is (1)\left( -1 \right).
m1×m2=1{{m}_{1}}\times {{m}_{2}}=-1
According to the question, OAOA and OBOB are perpendicular.
mOA×mOB=1{{m}_{OA}}\times {{m}_{OB}}=-1
tanθ×tanφ=1\Rightarrow \tan \theta \times \tan \varphi =-1
sinθ×sinφcosθ×cosφ=1\Rightarrow \dfrac{\sin \theta \times \sin \varphi }{\cos \theta \times \cos \varphi }=-1
cosθ.cosφ+sinθ.sinφ=0\Rightarrow \cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0 … (ii)
Now as we know that midpoint M(x,y)M\left( x,y \right) of line segmentABAB, where A(x1,y1)A\left( {{x}_{1}},{{y}_{1}} \right) and B(x2,y2)B\left( {{x}_{2}},{{y}_{2}} \right) is –
x=x1+x22x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2} andy=y1+y22y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}.
Now let us assume midpoint of chordABAB, where AA is (2cosθ,2sinθ)\left( 2\cos \theta ,2\sin \theta \right) and BB is (2cosφ,2sinφ)\left( 2\cos \varphi ,2\sin \varphi \right) is P(h,k)P\left( h,k \right).
Then,
h=2cosθ+2cosφ2h=\dfrac{2\cos \theta +2\cos \varphi }{2}
h=cosθ+cosφ\Rightarrow h=\cos \theta +\cos \varphi … (iii)
k=2sinθ+2sinφ2k=\dfrac{2\sin \theta +2\sin \varphi }{2}
k=sinθ+sinφ\Rightarrow k=\sin \theta +\sin \varphi … (iv)
Now by adding squares of equation (iii) and (iv), we get
h2=(cosθ+cosφ)2{{h}^{2}}={{\left( \cos \theta +\cos \varphi \right)}^{2}} and k2=(sinθ+sinφ)2{{k}^{2}}={{\left( \sin \theta +\sin \varphi \right)}^{2}}
h2+k2=cos2θ+cos2φ+2cosθcosφ+sin2θ+sin2φ+2sinθsinφ\Rightarrow {{h}^{2}}+{{k}^{2}}={{\cos }^{2}}\theta +{{\cos }^{2}}\varphi +2\cos \theta \cos \varphi +{{\sin }^{2}}\theta +{{\sin }^{2}}\varphi +2\sin \theta \sin \varphi
cos2θ+sin2θ=1\because {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1
h2+k2=1+1+2(cosθcosφ+sinθsinφ)\Rightarrow {{h}^{2}}+{{k}^{2}}=1+1+2\left( \cos \theta \cos \varphi +\sin \theta \sin \varphi \right)
Now by equation (ii), cosθ.cosφ+sinθ.sinφ=0\cos \theta .\cos \varphi +\sin \theta .\sin \varphi =0
h2+k2=2+0\Rightarrow {{h}^{2}}+{{k}^{2}}=2+0
h2+k2=2\Rightarrow {{h}^{2}}+{{k}^{2}}=2
Now by replacing hxh\to x andkyk\to y, we have
x2+y2=2\Rightarrow {{x}^{2}}+{{y}^{2}}=2

So, the locus of the midpoint of chord is a circle, x2+y2=2{{x}^{2}}+{{y}^{2}}=2.

So, the correct answer is “Option A”.

Note: (i) In this type of question while solving equations, we should try to eliminate all other variables except hh andkk, and get equations in hh and kk.

(ii) In this question, we get an equationtanθ×tanφ=1\tan \theta \times \tan \varphi =-1.
If we consider formula:
tan(θφ)=tanθtanφ1+tanθ.tanφ\tan \left( \theta -\varphi \right)=\dfrac{\tan \theta -\tan \varphi }{1+\tan \theta .\tan \varphi }
tan(θφ)\because \tan \left( \theta -\varphi \right)\to \infty
(θφ)=90\Rightarrow \left( \theta -\varphi \right)=90{}^\circ
θ=90+φ\Rightarrow \theta =90{}^\circ +\varphi
We can use this relation also to solve the equation at last.

(iii) Here, students should take care while squaring and adding the two equations that there should not be any calculation mistakes, otherwise the whole question will be wrong.