Solveeit Logo

Question

Question: The locus of the mid-point of the distance between the axes of the variable line \(x\cos\alpha + y\s...

The locus of the mid-point of the distance between the axes of the variable line xcosα+ysinα=p,x\cos\alpha + y\sin\alpha = p, where p is constant, is.

A

x2+y2=4p2x^{2} + y^{2} = 4p^{2}

B

1x2+1y2=4p2\frac{1}{x^{2}} + \frac{1}{y^{2}} = \frac{4}{p^{2}}

C

x2+y2=4p2x^{2} + y^{2} = \frac{4}{p^{2}}

D

1x2+1y2=2p2\frac{1}{x^{2}} + \frac{1}{y^{2}} = \frac{2}{p^{2}}

Answer

1x2+1y2=4p2\frac{1}{x^{2}} + \frac{1}{y^{2}} = \frac{4}{p^{2}}

Explanation

Solution

The straight line xcosα+ysinα=px \cos \alpha + y \sin \alpha = p meets the x-axis at the point A(pcosα,0)A \left( \frac { p } { \cos \alpha } , 0 \right) and the y-axis at the point B(0,psinα)B \left( 0 , \frac { p } { \sin \alpha } \right). Let (h, k) be the coordinates of the middle point of the line segment AB.

Then h=p2cosαh = \frac { p } { 2 \cos \alpha } and k=p2sinαk = \frac { p } { 2 \sin \alpha }

cosα=p2h\Rightarrow \cos \alpha = \frac { p } { 2 h } and sinα=p2k\sin \alpha = \frac { p } { 2 k }

sin2α+cos2α=p24h2+p24k2=1\Rightarrow \sin ^ { 2 } \alpha + \cos ^ { 2 } \alpha = \frac { p ^ { 2 } } { 4 h ^ { 2 } } + \frac { p ^ { 2 } } { 4 k ^ { 2 } } = 1

Hence locus of the point (h, k) is 1x2+1y2=4p2\frac { 1 } { x ^ { 2 } } + \frac { 1 } { y ^ { 2 } } = \frac { 4 } { p ^ { 2 } }.