Solveeit Logo

Question

Mathematics Question on circle

The locus of the mid-point of a chord of the circle x2+y2=4x^2+ y^2 = 4, which subtends a right angle at the origin is

A

x+y=2x + y = 2

B

x2+y2=1x^{2}+y^{2}=1

C

x2+y2=2x^{2}+y^{2}=2

D

x+y=1x + y = 1

Answer

x2+y2=2x^{2}+y^{2}=2

Explanation

Solution

we have given circle x2+y2=4x^{2}+y^{2}=4. so, r=2r=2. So, radius will be 22.

we have given circle
we know that, Perpendicular from center i.e. OMOM bisects the chord ABA B.
OAM=45\therefore \angle O A M=45{\circ}
sin45=OMAM\therefore \sin 45^{\circ}=\frac{O M}{A M}
OM=sin45AM\Rightarrow O M=\sin 45^{\circ} \cdot A M
OM=12×2\Rightarrow O M=\frac{1}{\sqrt{2}} \times 2 (AM is radius)
OM=2\Rightarrow O M=\sqrt{2}
OM2=2\Rightarrow O M^{2}=2
h2+k2=OM2\Rightarrow h^{2}+k^{2}=O M^{2}
h2+k2=2\Rightarrow h^{2}+k^{2}=2
Hence, the focus of (h,k)(h, k) is x2+y2=2x^{2}+y^{2}=2.