Question
Mathematics Question on Ellipse
The locus of the foot of the perpendicular from the centre of the ellipse a2x2+b2y2=1 on any tangent is given by (x2+y2)=lx2+my2,where
A
l=a2,m=b2
B
l=−a2,b=−b2
C
l=−a2,m=−b2
D
l=a2,b=−b2
Answer
l=a2,m=b2
Explanation
Solution
Equation of any tangent to the given ellipse is y=mx±a2m2+b2 y−mx=±a2m2+b2...(1) Equation of perpendicular line is my+x=λ It passes through the centre (0,0) ∴λ=0 my+x=0...(2) On squaring and adding (1) and (2), we get y2+m2x2+m2y2+x2=a2m2+b2 (1+m2)(x2+y2)=a2m2+b2 ⇒(1+y2x2)(x2+y2)=y2a2x2+b2 [from(2)] ⇒(x2+y2)2=a2x2+b2y2 But (x2+y2)2=lx2+my2 l=a2,m=b2