Solveeit Logo

Question

Mathematics Question on Ellipse

The locus of the foot of the perpendicular from the centre of the ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2} = 1 on any tangent is given by (x2+y2)=lx2+my2(x^2+y^2) = lx^2+my^2,where

A

l=a2,m=b2l= a^2, m = b^2

B

l=a2,b=b2l = -a^2, b = -b^2

C

l=a2,m=b2 l = - a^2, m = - b^2

D

l=a2,b=b2 l = a^2,b = -b^2

Answer

l=a2,m=b2l= a^2, m = b^2

Explanation

Solution

Equation of any tangent to the given ellipse is y=mx±a2m2+b2y= mx\pm\sqrt{a^{2}m^{2}+b^{2}} ymx=±a2m2+b2...(1)y-mx =\pm \sqrt{a^{2}m^{2}+b^{2}}\quad...\left(1\right) Equation of perpendicular line is my+x=λmy + x = \lambda It passes through the centre (0,0)\left(0, 0\right) λ=0\therefore \lambda = 0 my+x=0...(2)my + x = 0 \quad...\left(2\right) On squaring and adding (1)\left(1\right) and (2)\left(2\right), we get y2+m2x2+m2y2+x2=a2m2+b2y^{2} +m^{2}x^{2}+m^{2}y^{2}+x^{2} = a^{2}m^{2}+b^{2} (1+m2)(x2+y2)=a2m2+b2\left(1+m^{2}\right)\left(x^{2}+y^{2}\right) = a^{2}m^{2} +b^{2} (1+x2y2)(x2+y2)=a2x2y2+b2 \Rightarrow \left(1+\frac{x^{2}}{y^{2}}\right)\left(x^{2}+y^{2}\right) = \frac{a^{2}x^{2}}{y^{2}}+b^{2} [from(2)]\quad\left[from \left(2\right)\right] (x2+y2)2=a2x2+b2y2\Rightarrow \left(x^{2}+y^{2}\right)^{2} = a^{2}x^{2}+b^{2}y^{2} But (x2+y2)2=lx2+my2\left(x^{2}+y^{2}\right)^{2} = lx^{2}+my^{2} l=a2,m=b2l=a^{2}, m =b^{2}