Solveeit Logo

Question

Mathematics Question on Conic sections

The locus of the foot of perpendicular drawn from the centre of the ellipse x2+3y2=6 x^2 + 3y^2 = 6 on any tangent to it is

A

(x2+y2)2=6x2+2y2 (x^2 + y^2)^2 = 6x^2 + 2y^2

B

(x2+y2)2=6x22y2 (x^2 + y^2)^2 = 6x^2 - 2y^2

C

(x2y2)2=6x2+2y2(x^2 - y^2)^2 = 6x^2 + 2y^2

D

(x2y2)2=6x22y2(x^2 - y^2)^2 = 6x^2 - 2y^2

Answer

(x2+y2)2=6x2+2y2 (x^2 + y^2)^2 = 6x^2 + 2y^2

Explanation

Solution

Equationofellipseisx2+3y2=6orx26+y22=1Equation \, \, of \, ellipse \, is x^2+ 3 y^2 = 6 or \frac{x^2}{6} + \frac{y^2}{2} = 1
Equation of the t. angent. is xcosθa+ysinθb=1\frac{xcos \theta}{a } + \frac{y sin \theta}{b } = 1
Let (6, k) be any point on the locus.
\therefore \hspace20mm hacosθ+kbsinθ=1\frac{ h}{a} cos \theta +\frac{ k}{b} sin \theta =1 ......(i)
Slope of the tangent line is bacotθ\frac{-b}{a} cot \theta
Slope of perpendicular drawn from centre (0,0) to (6, k) is k/h
Since, both the lines are perpendicular.
(kh)×(bacotθ)=1\therefore \, \, \, \, \, \, \, \, \, \bigg(\frac{k}{h} \bigg) \times \bigg( -\frac{b}{a}cot \theta \bigg) = -1
cosθha=sinθkb=α[say]\Rightarrow \, \, \, \, \frac{ cos \theta}{ha} = \frac{ sin \theta}{ kb} = \alpha \, \, \, \, \, [say]
cosθ=αha\Rightarrow cos \theta = \alpha h a
\hspace15mm sinθ=αkbsin \theta = \alpha k b
From E1 ha(αha)+kb(αkb)=1 \frac{h}{a}(\alpha h a) + \frac{k}{b}( \alpha k b ) = 1
h2α+k2α=1\Rightarrow \, \, \, \, \, \, \, \, \, h^2 \alpha + k^2 \alpha = 1
α=1h2+k2\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \alpha= \frac{1}{h^2 +k^2}
Also , sin2α+cos2α=1sin ^2 \alpha +cos ^2 \alpha =1
(αkb)2+(αha)2=1α2k2b2+α2h2a2=1\Rightarrow \, \, \, \, \, \, ( \alpha k b)^2+( \alpha h a)^2 =1 \Rightarrow \alpha^2 k^2 b^2 + \alpha^2 h^2 a^2 =1
k2b2(h2+k2)2+h2a2(h2+k2)2=1\Rightarrow \frac{k^2 b^2 }{(h^2 + k^2)^2} + \frac{h^2 a^2} {(h^2+ k^2)^2} =1
2k2(h2+k2)2+6h2(h2+k2)2=1[a2=6,b2=2]\Rightarrow \frac{2 k^2 }{(h^2 + k^2)^2} + \frac{ 6 h^2 } {(h^2+ k^2)^2} =1 \, \, \, \, \, \, [ \therefore a^2= 6 , b^2 =2 ]
6x2+2y2=(x2+y2)2\Rightarrow 6x^2 +2 y^2 = (x^2 +y^2)^2
\hspace25mm [replacing k by y and h by x]