Question
Mathematics Question on Conic sections
The locus of the foot of perpendicular drawn from the centre of the ellipse x2+3y2=6 on any tangent to it is
(x2+y2)2=6x2+2y2
(x2+y2)2=6x2−2y2
(x2−y2)2=6x2+2y2
(x2−y2)2=6x2−2y2
(x2+y2)2=6x2+2y2
Solution
Equationofellipseisx2+3y2=6or6x2+2y2=1
Equation of the t. angent. is axcosθ+bysinθ=1
Let (6, k) be any point on the locus.
∴ \hspace20mm ahcosθ+bksinθ=1 ......(i)
Slope of the tangent line is a−bcotθ
Slope of perpendicular drawn from centre (0,0) to (6, k) is k/h
Since, both the lines are perpendicular.
∴(hk)×(−abcotθ)=−1
⇒hacosθ=kbsinθ=α[say]
⇒cosθ=αha
\hspace15mm sinθ=αkb
From E1 ah(αha)+bk(αkb)=1
⇒h2α+k2α=1
⇒α=h2+k21
Also , sin2α+cos2α=1
⇒(αkb)2+(αha)2=1⇒α2k2b2+α2h2a2=1
⇒(h2+k2)2k2b2+(h2+k2)2h2a2=1
⇒(h2+k2)22k2+(h2+k2)26h2=1[∴a2=6,b2=2]
⇒6x2+2y2=(x2+y2)2
\hspace25mm [replacing k by y and h by x]