Solveeit Logo

Question

Mathematics Question on Circle

The locus of the centre of the circle x2+y2+4xcosθ2ysinθ10=0x^2 + y^2 + 4x \,\cos \,\theta - 2y\, sin \theta - 10 = 0 is

A

an ellipse

B

a circle

C

a hyperbola

D

a parabola

Answer

an ellipse

Explanation

Solution

The correct answer is A:an ellipse
If (α,β)\left(\alpha, \beta\right) is the centre, then α=2cosθ,β=sinθ\alpha = -2\,cos\,\theta, \beta = sin \,\theta
(α2)2+β2=cos2θ+sin2θ=1\therefore\left(\frac{\alpha}{-2}\right)^{2}+\beta^{2} = cos^{2}\theta +sin^{2}\theta = 1
α24+β2=1\Rightarrow \frac{\alpha^{2}}{4}+\beta^{2} = 1
\therefore locus of (α,β)\left(\alpha, \beta\right) is x24+y21=1\frac{x^{2}}{4}+\frac{y^{2}}{1}= 1, an ellipse .