Solveeit Logo

Question

Question: The locus of the centre of the circle which cuts a chord of length 2a from the positive x-axis and p...

The locus of the centre of the circle which cuts a chord of length 2a from the positive x-axis and passes through a point on positive y-axis distant b from the origin is.

A

x2+2by=b2+a2x ^ { 2 } + 2 b y = b ^ { 2 } + a ^ { 2 }

B

x22by=b2+a2x ^ { 2 } - 2 b y = b ^ { 2 } + a ^ { 2 }

C

x2+2by=a2b2x ^ { 2 } + 2 b y = a ^ { 2 } - b ^ { 2 }

D

x22by=b2a2x ^ { 2 } - 2 b y = b ^ { 2 } - a ^ { 2 }

Answer

x2+2by=a2b2x ^ { 2 } + 2 b y = a ^ { 2 } - b ^ { 2 }

Explanation

Solution

Here 2g2c=2ag2a2c=02 \sqrt { g ^ { 2 } - c } = 2 a \Rightarrow g ^ { 2 } - a ^ { 2 } - c = 0 .....(i)

and it passes through (0, b), therefore

b2+2fb+c=0b ^ { 2 } + 2 f b + c = 0 ….(ii)

On adding (i) and (ii), we get g2+2fb=a2b2g ^ { 2 } + 2 f b = a ^ { 2 } - b ^ { 2 }

Hence locus is x2+2by=a2b2x ^ { 2 } + 2 b y = a ^ { 2 } - b ^ { 2 }.