Solveeit Logo

Question

Mathematics Question on Straight lines

The locus of the centre of the circle, which cuts the circle x2+y220x+4=0x^{2}+y^{2}-20 x+4=0 orthogonally and touches the line x=2x=2, is

A

x2=16yx^{2}=16 y

B

y2=4xy^{2}=4 x

C

y2=16xy^{2}=16 x

D

x2=4yx^{2}=4 y

Answer

y2=16xy^{2}=16 x

Explanation

Solution

Let the equation of circle be x2+y2+2gx+2fy+c=0x^{2}+y^{2}+2\, g x+2\, f \,y+c=0 where, centre (g,f)(-g,-f) The centre of given circle x2+y220x+4=0x^{2}+y^{2}-20 x+4=0 is (10,0)(10,0) Condition of two circles cut. 2(g1g2+f1f2)=c1+c2\therefore 2\left(g_{1} \,g_{2}+f_{1}\, f_{2}\right) =c_{1}+c_{2} 2(g×10+0×(f)=c+42(-g \times 10+0 \times(-f)=c+4 2(10g)=c+42(-10 \,g) =c+4 Also, circle touch the line x=2x=2. \therefore The perpendicular distance from centre to the circle is equal to radius of the circle. g21=g2+f2c\therefore \frac{|-g-2|}{\sqrt{1}}=\sqrt{g^{2}+f^{2}-c} (g+2)=g2+f2c\Rightarrow (g+2)=\sqrt{g^{2}+f^{2}-c} g2+4+4g=g2+f2c\Rightarrow g^{2}+4+4 \,g=g^{2}+f^{2}-c f24gc4=0\Rightarrow f^{2}-4\, g-c-4=0 f24g+4+20g4=0\Rightarrow f^{2}-4 \,g+4+20\, g-4=0 f2+16g=0\Rightarrow f^{2}+16\, g=0 Hence, the locus of (g,f)(-g,-f) is y216x=0y^{2}-16 x=0 y2=16x \Rightarrow y^{2}=16 x