Solveeit Logo

Question

Mathematics Question on Circle

The locus of the centre of the circle of radius 3 which rolls on the outside of the circle x2+y2+3x6y9=0x^2+y^2 + 3x - 6y - 9 = 0 is

A

x2+y2+3x6y31=0x^2 + y^2 + 3x - 6y - 31 = 0

B

x2+y2+3x6y293=0x^2 + y^2 + 3x - 6y - \frac{29}{3} = 0

C

x2+y2+3x6y45=0x^2 + y^2 + 3x - 6y - 45 = 0

D

x2+y2+3x6y+31=0x^2 + y^2 + 3x - 6y + 31 = 0

Answer

x2+y2+3x6y45=0x^2 + y^2 + 3x - 6y - 45 = 0

Explanation

Solution

Wehave, x2+y2+3x6y9=0x^2+y^2+ 3x - 6y - 9 = 0
(x+32)2+(y3)2=814\Rightarrow \left(x+ \frac{3}{2}\right)^{2} + \left(y -3\right)^{2} = \frac{81}{4}
Hence, Iocusof the centre of the circle of radius 3 is
(x+32)2+(y3)2=(92+3)2\left(x+ \frac{3}{2}\right)^{2} + \left(y -3\right)^{2} = \left(\frac{9}{2} +3\right)^{2}
x2+94+3x+y2+96y=2254\Rightarrow x^{2} + \frac{9}{4} + 3x + y^{2} + 9-6y = \frac{225}{4}
x2+y2+3x6y45=0\Rightarrow x^{2} + y^{2} +3x -6y - 45 = 0