Solveeit Logo

Question

Question: The locus of the centre of a circle which cuts orthogonally the circle \(x^{2} + y^{2} - 20x + 4 = 0...

The locus of the centre of a circle which cuts orthogonally the circle x2+y220x+4=0x^{2} + y^{2} - 20x + 4 = 0 and which touches x=2x = 2 is

A

y2=16x+4y^{2} = 16x + 4

B

x2=16yx^{2} = 16y

C

x2=16y+4x^{2} = 16y + 4

D

y2=16xy^{2} = 16x

Answer

y2=16xy^{2} = 16x

Explanation

Solution

Let the circle be x2+y2+2gx+2fy+c=0x^{2} + y^{2} + 2gx + 2fy + c = 0 …..(i)

It cuts the circle x2+y220x+4=0x^{2} + y^{2} - 20x + 4 = 0 orthogonally

\therefore 2(10g+0×f)=c+42( - 10g + 0 \times f) = c + 4

20g=c+4\Rightarrow - 20g = c + 4 …..(ii)

Circle (i) touches the line x=2;x = 2;

\therefore x+0y2=0x + 0y - 2 = 0

\therefore g+021=g2+f2c\left| \frac{- g + 0 - 2}{\sqrt{1}} \right| = \sqrt{g^{2} + f^{2} - c}

(g+2)2=g2+f2c\Rightarrow (g + 2)^{2} = g^{2} + f^{2} - c 4g+4=f2c\Rightarrow 4g + 4 = f^{2} - c …..(iii)

Eliminating c from (ii) and (iii), we get

16g+4=f2+4f2+16g=0- 16g + 4 = f^{2} + 4 \Rightarrow f^{2} + 16g = 0.

Hence the locus of (g,f)- g, - f) is y216x=0y^{2} - 16x = 0

y2=16x.\Rightarrow y^{2} = 16x.