Solveeit Logo

Question

Question: The locus of the centre of a circle touching the circle x<sup>2</sup> + y<sup>2</sup> – 4y – 2x = 2...

The locus of the centre of a circle touching the circle

x2 + y2 – 4y – 2x = 23\sqrt { 3 } – 1 internally and tangents on which from (1, 2) is making a 60ŗ angle with each other is –

A

(x – 1)2 + (y – 2)2 = 3

B

(x – 2)2 + (y – 1)2 = 1 + 23\sqrt { 3 }

C

x2 + y2 = 1

D

None of these

Answer

(x – 1)2 + (y – 2)2 = 3

Explanation

Solution

Let r & R be the radii of required and given circles resp. & let centre is (h, k).

By given condition

= R – r.

Now = tan 300

Ž r = AB tan 300

= (R – r) 13\frac { 1 } { \sqrt { 3 } } (AB = R – r)

Ž == R – R1+3\frac { \mathrm { R } } { 1 + \sqrt { 3 } } = R (31+3)\left( \frac { \sqrt { 3 } } { 1 + \sqrt { 3 } } \right)

Now R = 1 +3\sqrt { 3 }

\ Locus is ( x – 1)2 + (y – 2)2 = 3