Solveeit Logo

Question

Question: The locus of the centre of a circle of radius 2 which rolls on the outside of circle \(x ^ { 2 } + y...

The locus of the centre of a circle of radius 2 which rolls on the outside of circle x2+y2+3x6y9=0x ^ { 2 } + y ^ { 2 } + 3 x - 6 y - 9 = 0, is.

A

x2+y2+3x6y+5=0x ^ { 2 } + y ^ { 2 } + 3 x - 6 y + 5 = 0

B

x2+y2+3x6y31=0x ^ { 2 } + y ^ { 2 } + 3 x - 6 y - 31 = 0

C

x2+y2+3x6y+294=0x ^ { 2 } + y ^ { 2 } + 3 x - 6 y + \frac { 29 } { 4 } = 0

D

None of these

Answer

x2+y2+3x6y31=0x ^ { 2 } + y ^ { 2 } + 3 x - 6 y - 31 = 0

Explanation

Solution

Let (h, k)be the centre of the circle which rolls on the outside of the given circle. Centre of the given circle is (32,3)\left( \frac { - 3 } { 2 } , 3 \right) and its radius =94+9+9=92= \sqrt { \frac { 9 } { 4 } + 9 + 9 } = \frac { 9 } { 2 }.

Clearly, (h, k) is always at a distance equal to the sum (92+2)\left( \frac { 9 } { 2 } + 2 \right) =132= \frac { 13 } { 2 } of the radii of two circles from (32,3)\left( - \frac { 3 } { 2 } , 3 \right) . Therefore (h+32)2+(k3)2=(132)2\left( h + \frac { 3 } { 2 } \right) ^ { 2 } + ( k - 3 ) ^ { 2 } = \left( \frac { 13 } { 2 } \right) ^ { 2 }

h2+k2+3h6k+94+91694=0\Rightarrow h ^ { 2 } + k ^ { 2 } + 3 h - 6 k + \frac { 9 } { 4 } + 9 - \frac { 169 } { 4 } = 0

\RightarrowHence locus of (h, k) is x2+y2+3x6y31=0x ^ { 2 } + y ^ { 2 } + 3 x - 6 y - 31 = 0.