Solveeit Logo

Question

Question: The locus of point of intersection of the lines \(\sqrt{3}\)x– y – 4\(\sqrt{3}\)k = 0 and \(\sqrt{3}...

The locus of point of intersection of the lines 3\sqrt{3}x– y – 43\sqrt{3}k = 0 and 3\sqrt{3}kx + ky – 43\sqrt{3}= 0 represent a hyperbola then its eccentricity equals –

A

2\sqrt{2}

B

2

C

7\sqrt{7}

D

5\sqrt{5}

Answer

2

Explanation

Solution

3xy43\frac{\sqrt{3}x - y}{4\sqrt{3}}= 433x+y\frac{4\sqrt{3}}{\sqrt{3}x + y}

Ю 3x2 – y2 = 48

Ю x216\frac{x^{2}}{16}y248\frac{y^{2}}{48}= 1

48 = 16 (e2 –1) Ю e2 = 4

Ю e = 2