Solveeit Logo

Question

Question: The locus of \(P\) such that the area of \(\Delta PAB\) is \(12\) square units where \(A=\left( 2,2 ...

The locus of PP such that the area of ΔPAB\Delta PAB is 1212 square units where A=(2,2)A=\left( 2,2 \right) and B(4,5)B\left( -4,5 \right) is
(A) x2+4xy+4y212x24y28=0\left( A \right)\text{ }{{x}^{2}}+4xy+4{{y}^{2}}-12x-24y-28=0
(B) x26xy+9y2+22x+66y+23=0\left( B \right)\text{ }{{x}^{2}}-6xy+9{{y}^{2}}+22x+66y+23=0
(C) x2+6xy+9y222x66y23=0\left( C \right)\text{ }{{x}^{2}}+6xy+9{{y}^{2}}-22x-66y-23=0
(D) x26xy+9y222x66y23=0\left( D \right)\text{ }{{x}^{2}}-6xy+9{{y}^{2}}-22x-66y-23=0

Explanation

Solution

In this question we have been given two points of a triangle which are A(2,2)A\left( 2,2 \right) and B(4,5)B\left( -4,5 \right). We have also been given the area of the triangle as 1212 square units. We have to find the locus of PP from the given data. We know that the area of triangle with coordinates A(x1,y1)A\left( {{x}_{1}},{{y}_{1}} \right), B(x2,y2)B\left( {{x}_{2}},{{y}_{2}} \right) and C(x3,y3)C\left( {{x}_{3}},{{y}_{3}} \right) is given by the formula A=12x1y11 x2y21 x3y31 A=\left| \dfrac{1}{2}\left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & 1 \\\ {{x}_{2}} & {{y}_{2}} & 1 \\\ {{x}_{3}} & {{y}_{3}} & 1 \\\ \end{matrix} \right| \right|. Since we have with us two coordinates out of the three and the area provided, we will consider the third coordinate to be (x,y)\left( x,y \right) and get the required equation of the locus.

Complete step by step solution:
We know that the area of ΔPAB\Delta PAB is 1212 square units and the coordinates of the two sides of the triangle are A(2,2)A\left( 2,2 \right) and B(4,5)B\left( -4,5 \right).
Consider the third point to be (x,y)\left( x,y \right).
On substituting the values in the formula, we get:
12=12221 451 xy1 \Rightarrow 12=\left| \dfrac{1}{2}\left| \begin{matrix} 2 & 2 & 1 \\\ -4 & 5 & 1 \\\ x & y & 1 \\\ \end{matrix} \right| \right|
On expanding the determinant, we get:
12=12×2(5y)2(4x)+1(4y5x)\Rightarrow 12=\left| \dfrac{1}{2}\times 2\left( 5-y \right)-2\left( -4-x \right)+1\left( -4y-5x \right) \right|
On simplifying, we get:
12=12×(102y+8+2x4y5x)\Rightarrow 12=\left| \dfrac{1}{2}\times \left( 10-2y+8+2x-4y-5x \right) \right|
On simplifying the terms, we get:
12=12×(186y3x)\Rightarrow 12=\left| \dfrac{1}{2}\times \left( 18-6y-3x \right) \right|
On taking 33 common, we get:
12=32×(62yx)\Rightarrow 12=\left| \dfrac{3}{2}\times \left( 6-2y-x \right) \right|
On rearranging the terms and multiplying, we get:
8=62yx\Rightarrow 8=\left| 6-2y-x \right|
Now to remove the modulus sign, we will square both the sides, we get:
82=(62yx)2\Rightarrow {{8}^{2}}={{\left( 6-2y-x \right)}^{2}}
on expanding, we get:
64=36+4y2+x224y+4xy12x\Rightarrow 64=36+4{{y}^{2}}+{{x}^{2}}-24y+4xy-12x
On rearranging the terms, we get:
x2+4y2+4xy+3612x24y=64\Rightarrow {{x}^{2}}+4{{y}^{2}}+4xy+36-12x-24y=64
On transferring the term 6464 to the left-hand side, we get:
x2+4y2+4xy12x24y64+36=0\Rightarrow {{x}^{2}}+4{{y}^{2}}+4xy-12x-24y-64+36=0
On simplifying, we get:
x2+4xy+4y212x24y28=0\Rightarrow {{x}^{2}}+4xy+4{{y}^{2}}-12x-24y-28=0, which is the required solution

So, the correct answer is “Option A”.

Note: It is to be remembered that locus is a set of all points satisfying some condition. This type of question can also be solved by using the distance formula. It is to be noted that we take a modulus of the value since area cannot be negative. On squaring a term the modulus sign gets removed.