Solveeit Logo

Question

Question: The locus of mid-points of a focal chord of the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} ...

The locus of mid-points of a focal chord of the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1is

A

x2a2+y2b2=exa\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \frac{ex}{a}

B

x2a2y2b2=exa\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = \frac{ex}{a}

C

x2+y2=a2+b2x^{2} + y^{2} = a^{2} + b^{2}

D

None of these

Answer

x2a2+y2b2=exa\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \frac{ex}{a}

Explanation

Solution

Let (h,k)(h,k) be the mid point of a focal chord. Then its equation is S1=TS_{1} = Tor hxa2+kyb2=h2a2+k2b2\frac{hx}{a^{2}} + \frac{ky}{b^{2}} = \frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}}. This passes through (ae,0)(ae,0), ∴haea2=h2a2+k2b2\frac{hae}{a^{2}} = \frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}}. So, locus of (h,k)(h,k) is xea=x2a2+y2b2\frac{xe}{a} = \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}