Solveeit Logo

Question

Question: The locus of chords of contact of perpendicular tangents to the ellipse \(\frac{x^{2}}{a^{2}} + \fra...

The locus of chords of contact of perpendicular tangents to the ellipse x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}= 1 touch another fixed ellipse is-

A

x2a2\frac{x^{2}}{a^{2}}+ y2b2\frac{y^{2}}{b^{2}} = 1(2a2+b2)\frac{1}{(2a^{2} + b^{2})}

B

x2a2+y2b2=2(a2b2)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \frac{2}{(a^{2}–b^{2})}

C

x2a4+y2b4=1(a2+b2)\frac{x^{2}}{a^{4}} + \frac{y^{2}}{b^{4}} = \frac{1}{(a^{2} + b^{2})}

D

x2a2y2b2=2(3a2b2)\frac{x^{2}}{a^{2}}–\frac{y^{2}}{b^{2}} = \frac{2}{(3a^{2}–b^{2})}

Answer

x2a4+y2b4=1(a2+b2)\frac{x^{2}}{a^{4}} + \frac{y^{2}}{b^{4}} = \frac{1}{(a^{2} + b^{2})}

Explanation

Solution

We know that locus of the point of intersection of perpendicular tangents to the given ellipse is x2 + y2 = a2 + b2 .

Any point on this circle can be taken as

P ŗ(a2+b2cosθ,a2+b2sinθ)\left( \sqrt{a^{2} + b^{2}}\cos\theta,\sqrt{a^{2} + b^{2}}\sin\theta \right)The equation of the chord of contact of tangents from P is

xa2a2+b2cosθ+yb2a2+b2\frac{x}{a^{2}}\sqrt{a^{2} + b^{2}}\cos{}\theta + \frac{y}{b^{2}}\sqrt{a^{2} + b^{2}}sin q = 1.

Let this line be a tangent to the fixed ellipse x2A2+y2B2\frac{x^{2}}{A^{2}} + \frac{y^{2}}{B^{2}} = 1.

Ž xA\frac{x}{A}cos q + yB\frac{y}{B ⥂}sin q = 1,

Where A = a2a2+b2\frac{a^{2}}{\sqrt{a^{2} + b^{2}}}, B = b2a2+b2\frac{b^{2}}{\sqrt{a^{2} + b^{2}}}.

x2a4+y2b4=1(a2+b2)\frac{x^{2}}{a^{4}} + \frac{y^{2}}{b^{4}} = \frac{1}{(a^{2} + b^{2})}.

\ an ellipse.

Hence (3) is the correct answer.