Solveeit Logo

Question

Question: The locus of a point whose difference of distance from points (3, 0) and (–3,0) is 4, is....

The locus of a point whose difference of distance from points (3, 0) and (–3,0) is 4, is.

A

x24y25=1\frac{x^{2}}{4} - \frac{y^{2}}{5} = 1

B

x25y24=1\frac{x^{2}}{5} - \frac{y^{2}}{4} = 1

C

x22y23=1\frac{x^{2}}{2} - \frac{y^{2}}{3} = 1

D

x23y22=1\frac{x^{2}}{3} - \frac{y^{2}}{2} = 1

Answer

x24y25=1\frac{x^{2}}{4} - \frac{y^{2}}{5} = 1

Explanation

Solution

Let the point be

Given that PAPB=4P A - P B = 4

(h3)2+k2(h+3)2+k2=4\sqrt { ( h - 3 ) ^ { 2 } + k ^ { 2 } } - \sqrt { ( h + 3 ) ^ { 2 } + k ^ { 2 } } = 4

(h3)2+k2=4+(h+3)2+k2\Rightarrow \sqrt { ( h - 3 ) ^ { 2 } + k ^ { 2 } } = 4 + \sqrt { ( h + 3 ) ^ { 2 } + k ^ { 2 } }

Squaring both sides, we get

(h3)2+k2=16+(h+3)2+k2+8(h+3)2+k2( h - 3 ) ^ { 2 } + k ^ { 2 } = 16 + ( h + 3 ) ^ { 2 } + k ^ { 2 } + 8 \sqrt { ( h + 3 ) ^ { 2 } + k ^ { 2 } }

h2+96h+k2=16+h2+9+6h+k2\Rightarrow h ^ { 2 } + 9 - 6 h + k ^ { 2 } = 16 + h ^ { 2 } + 9 + 6 h + k ^ { 2 } +8(h+3)2+k2+ 8 \sqrt { ( h + 3 ) ^ { 2 } + k ^ { 2 } }

6h=16+6h+8(h+3)2+k2\Rightarrow - 6 h = 16 + 6 h + 8 \sqrt { ( h + 3 ) ^ { 2 } + k ^ { 2 } } 8(h+3)2+k2=12h+16\Rightarrow - 8 \sqrt { ( h + 3 ) ^ { 2 } + k ^ { 2 } } = 12 h + 16

Again, squaring both sides, we get

64(h2+9+6h+k2)=144h2+256+2.16.12h64 \left( h ^ { 2 } + 9 + 6 h + k ^ { 2 } \right) = 144 h ^ { 2 } + 256 + 2.16 .12 h 4(h2+9+6h+k2)=9h2+16+24h\Rightarrow 4 \left( h ^ { 2 } + 9 + 6 h + k ^ { 2 } \right) = 9 h ^ { 2 } + 16 + 24 h 4h2+36+24h+4k2=9h2+16+24h\Rightarrow 4 h ^ { 2 } + 36 + 24 h + 4 k ^ { 2 } = 9 h ^ { 2 } + 16 + 24 h

5h24k2=20h24k25=1\Rightarrow 5 h ^ { 2 } - 4 k ^ { 2 } = 20 \Rightarrow \frac { h ^ { 2 } } { 4 } - \frac { k ^ { 2 } } { 5 } = 1

Hence, the locus of point P is x24y25=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 5 } = 1.