Solveeit Logo

Question

Mathematics Question on Straight lines

The locus of a point which is equidistant from the points (1,1)(1,1) and (3,3)(3, 3) is

A

y=x+4y = x + 4

B

x+y=4x + y = 4

C

x=2x = 2

D

y=2y = 2

Answer

x+y=4x + y = 4

Explanation

Solution

Let P(h,k)P(h, k) be a point, which is equidistant from the points A(1,1)A(1,1) and B(3,3)B(3,3).
i.e., PA=PBPA=PB
(PA)2=(PB)2\Rightarrow\, (P A)^{2}=(P B)^{2}
(h1)2+(k1)2=(h3)2+(k3)2\Rightarrow\,(h-1)^{2}+(k-1)^{2}=(h-3)^{2}+(k-3)^{2} (by distance formula)
12h+12k=96h+96k\Rightarrow 1-2 h+1-2 k=9-6 h+9-6 k
4h+4k=16\Rightarrow\, 4 h+4 k=16
h+k=4\Rightarrow\, h+k=4
So, required locus is x+y=4x+y=4.