Solveeit Logo

Question

Question: The locus of a point which divides a chord of slope 2 of the parabola \[{{y}^{2}}=4x\] internally in...

The locus of a point which divides a chord of slope 2 of the parabola y2=4x{{y}^{2}}=4x internally in the ratio 1:2 is
(a) (y+49)2=49(x29){{\left( y+\dfrac{4}{9} \right)}^{2}}=\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)
(b) (y89)2=49(x29){{\left( y-\dfrac{8}{9} \right)}^{2}}=\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)
(c) (y89)2=49(x+29){{\left( y-\dfrac{8}{9} \right)}^{2}}=\dfrac{4}{9}\left( x+\dfrac{2}{9} \right)
(d) (y+89)2=49(x+29){{\left( y+\dfrac{8}{9} \right)}^{2}}=\dfrac{4}{9}\left( x+\dfrac{2}{9} \right)

Explanation

Solution

Hint: To find the locus of point which divides a chord of given slope of the parabola internally in the ratio 1:2, write the equation of chord joining any two points of the parabola and then find the point which divides these two points on the parabola internally in the ratio 1:2.

We have a parabola y2=4x{{y}^{2}}=4x.We have to find the locus of point on a chord of slope 2 which divides the chord internally in the ratio 1:2.
Let’s assume that there are two points on parabola P(t1)P\left( {{t}_{1}} \right)andQ(t2)Q\left( {{t}_{2}} \right).
The equation of chord of the parabola y2=4ax{{y}^{2}}=4ax joining these two points P(t1)P\left( {{t}_{1}} \right) and Q(t2)Q\left( {{t}_{2}} \right)isy(t1+t2)=2x+2at1t2y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2a{{t}_{1}}{{t}_{2}}.
We observe that a=1a=1 in our case.
By substituting the value, we have y(t1+t2)=2x+2t1t2y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2{{t}_{1}}{{t}_{2}}
Dividing the equation by (t1+t2)\left( {{t}_{1}}+{{t}_{2}} \right), we get
y=2xt1+t2+2t1t2t1+t2y=\dfrac{2x}{{{t}_{1}}+{{t}_{2}}}+\dfrac{2{{t}_{1}}{{t}_{2}}}{{{t}_{1}}+{{t}_{2}}}
We know the slope of this chord is 2, thus, 2t1+t2=2\dfrac{2}{{{t}_{1}}+{{t}_{2}}}=2
t1+t2=1\Rightarrow {{t}_{1}}+{{t}_{2}}=1
t2=1t1\Rightarrow {{t}_{2}}=1-{{t}_{1}} (1)-\left( 1 \right)

Now, we know that the formula of point which internally divides two points (a,b)\left( a,b \right)and (c,d)\left( c,d \right)in the ratio m:nm:n is(am+cnm+n,bm+dnm+n)\left( \dfrac{am+cn}{m+n},\dfrac{bm+dn}{m+n} \right).
If a point divides any two points externally, then we replace + by - in the above formula.
So, let’s assume that the locus of our point which divides the chord with end points(t12,2t1)\left( t_{1}^{2},2{{t}_{1}} \right)and (t22,2t2)\left( t_{2}^{2},2{{t}_{2}} \right) in the ratio 1:21:2 is (x,y)\left( x,y \right)
(x,y)=(t22+2t123,2t2+4t13)\Rightarrow \left( x,y \right)=\left( \dfrac{t_{2}^{2}+2t_{1}^{2}}{3},\dfrac{2{{t}_{2}}+4{{t}_{1}}}{3} \right)
x=t22+2t123\Rightarrow x=\dfrac{t_{2}^{2}+2t_{1}^{2}}{3} and y=2t2+4t13y=\dfrac{2{{t}_{2}}+4{{t}_{1}}}{3}
Substituting using equation (1)\left( 1 \right),we get
\Rightarrow x=\dfrac{{{\left( 1-{{t}_{1}} \right)}^{2}}+2t_{1}^{2}}{3}=\dfrac{3t_{1}^{2}+1-2{{t}_{1}}}{3}$$$$=t_{1}^{2}+\dfrac{1}{3}-\dfrac{2{{t}_{1}}}{3} (2)\left( 2 \right)
y=2(1t1)+4t13=2+2t13\Rightarrow y=\dfrac{2\left( 1-{{t}_{1}} \right)+4{{t}_{1}}}{3}=\dfrac{2+2{{t}_{1}}}{3}
Solving t1{{t}_{1}} in terms of yy by multiplying the equation by 3, subtracting 2 and then dividing by 2 on both sides, we get 3y22=t1\dfrac{3y-2}{2}={{t}_{1}} (3)\left( 3 \right)
Substituting using equation (3)\left( 3 \right)in equation(2)\left( 2 \right), we getx=(3y21)2+13(3y23)=9y24+13y+13y+23=9y244y+2x={{\left( \dfrac{3y}{2}-1 \right)}^{2}}+\dfrac{1}{3}-\left( \dfrac{3y-2}{3} \right)=\dfrac{9{{y}^{2}}}{4}+1-3y+\dfrac{1}{3}-y+\dfrac{2}{3}=\dfrac{9{{y}^{2}}}{4}-4y+2.
Multiplying the equation by 49\dfrac{4}{9}, we get 4x9=y216y9+89\dfrac{4x}{9}={{y}^{2}}-\dfrac{16y}{9}+\dfrac{8}{9}
Subtracting 881\dfrac{8}{81}from both side of the equation, we get 4x9881=y216y9+6481\dfrac{4x}{9}-\dfrac{8}{81}={{y}^{2}}-\dfrac{16y}{9}+\dfrac{64}{81}
Rearranging the terms, we get 49(x29)=(y89)2\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)={{\left( y-\dfrac{8}{9} \right)}^{2}}
Hence, the correct answer is (y89)2=49(x29){{\left( y-\dfrac{8}{9} \right)}^{2}}=\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)
Option (B) is the correct answer.
Note: We can also write the equation of chord in terms of a variable slope and then use it to find the locus of point which divides the chord in the ratio 1:2.