Solveeit Logo

Question

Question: The locus of a point equidistant from two given points **a** and **b** is given by...

The locus of a point equidistant from two given points a and b is given by

A

[r12(a+b)].(ab)=0\lbrack\mathbf{r} - \frac{1}{2}(\mathbf{a} + \mathbf{b})\rbrack.(\mathbf{a} - \mathbf{b}) = 0

B

[r12(ab)].(a+b)=0\lbrack\mathbf{r} - \frac{1}{2}(\mathbf{a} - \mathbf{b})\rbrack.(\mathbf{a} + \mathbf{b}) = 0

C

[r12(a+b)].(a+b)=0\lbrack\mathbf{r} - \frac{1}{2}(\mathbf{a} + \mathbf{b})\rbrack.(\mathbf{a} + \mathbf{b}) = 0

D

[r12(ab)].(ab)=0\lbrack\mathbf{r} - \frac{1}{2}(\mathbf{a} - \mathbf{b})\rbrack.(\mathbf{a} - \mathbf{b}) = 0

Answer

[r12(a+b)].(ab)=0\lbrack\mathbf{r} - \frac{1}{2}(\mathbf{a} + \mathbf{b})\rbrack.(\mathbf{a} - \mathbf{b}) = 0

Explanation

Solution

Let P(r)P(\mathbf{r}) be equidistant from A(a)A(\mathbf{a}) and B(b)B(\mathbf{b}) and PMPM be perpendicular to AB.AB.

Then MM is the mid point of AB.AB.

Position vector of MM is 12(a+b).\frac{1}{2}(\mathbf{a} + \mathbf{b}).

PM.BA=0\overset{\rightarrow}{PM}.\overset{\rightarrow}{BA} = 0 or [r12(a+b)].(ab)=0.\left\lbrack \mathbf{r} - \frac{1}{2}(\mathbf{a} + \mathbf{b}) \right\rbrack.(\mathbf{a} - \mathbf{b}) = 0.