Solveeit Logo

Question

Question: The locus of a point equidistant from two given points whose position vectors are **a** and **b** is...

The locus of a point equidistant from two given points whose position vectors are a and b is equal to

A

[r12(a+b)](a+b)=0\left[ \mathbf { r } - \frac { 1 } { 2 } ( \mathbf { a } + \mathbf { b } ) \right] \cdot ( \mathbf { a } + \mathbf { b } ) = 0

B

[r12(a+b)](ab)=0\left[ \mathbf { r } - \frac { 1 } { 2 } ( \mathbf { a } + \mathbf { b } ) \right] \cdot ( \mathbf { a } - \mathbf { b } ) = 0

C
D
Answer

[r12(a+b)](ab)=0\left[ \mathbf { r } - \frac { 1 } { 2 } ( \mathbf { a } + \mathbf { b } ) \right] \cdot ( \mathbf { a } - \mathbf { b } ) = 0

Explanation

Solution

Let P(r)P ( \mathbf { r } ) be a point on the locus.

\therefore AP=BPA P = B P

̃ ra=rb| \mathbf { r } - \mathbf { a } | = | \mathbf { r } - \mathbf { b } | ̃ ra2=rb2| \mathbf { r } - \mathbf { a } | ^ { 2 } = | \mathbf { r } - \mathbf { b } | ^ { 2 }

̃ (ra)(ra)=(rb)(rb)( \mathbf { r } - \mathbf { a } ) \cdot ( \mathbf { r } - \mathbf { a } ) = ( \mathbf { r } - \mathbf { b } ) \cdot ( \mathbf { r } - \mathbf { b } )

̃ ̃

\therefore . This is the locus of P.