Solveeit Logo

Question

Mathematics Question on Straight lines

The lines x+y=ax + y = | a | and axy=1ax - y = 1 intersect each other in the first quadrant. Then the set of all possible values of aa is the interval :

A

(0,)\left(0, \infty\right)

B

[1,)[1, \infty)

C

(1,)\left(-1, \infty\right)

D

(1,1](-1, 1]

Answer

[1,)[1, \infty)

Explanation

Solution

x+y=ax + y = |a| axy=1ax - y = 1 if a>0a > 0 x+y=ax + y = a axy=1ax - y = 1 x(1+a)=1+aasx=1x\left(1 + a\right) = 1 + a \,as\, x = 1 y=a1y = a - 1 It is first quadrant so a10a-1 \ge 0 a1a \ge 1 a[1,)a \in [1, \infty) If a<0a < 0 x+y=ax + y = - a axy=1ax - y = 1 ++ x(1+a)=1ax\left(1 + a\right) = 1 - a x=1a1+a>0a1a+1<0x = \frac{1-a}{1+a} > 0 \Rightarrow \frac{a-1}{a+1}< 0 y=a1a1+ay = - a-\frac{1-a}{1+a} =aa21+a1+a>0= \frac{-a-a^{2}-1+a}{1+a}> 0 (a2+1a+1)>0a2+1a+1<0-\left(\frac{a^{2}+1}{a+1}\right)> 0\quad\Rightarrow\quad \frac{a^{2}+1}{a+1} < 0 from (1)\left(1\right) and \left(2\right) a \in \left\\{\phi\right\\} So correct answer is a [1,)[\in 1, \infty)