Question
Mathematics Question on Straight lines
The lines x+y=∣a∣ and ax−y=1 intersect each other in the first quadrant. Then the set of all possible values of a is the interval :
A
(0,∞)
B
[1,∞)
C
(−1,∞)
D
(−1,1]
Answer
[1,∞)
Explanation
Solution
x+y=∣a∣ ax−y=1 if a>0 x+y=a ax−y=1 x(1+a)=1+aasx=1 y=a−1 It is first quadrant so a−1≥0 a≥1 a∈[1,∞) If a<0 x+y=−a ax−y=1 + x(1+a)=1−a x=1+a1−a>0⇒a+1a−1<0 y=−a−1+a1−a =1+a−a−a2−1+a>0 −(a+1a2+1)>0⇒a+1a2+1<0 from (1) and \left(2\right) a \in \left\\{\phi\right\\} So correct answer is a [∈1,∞)