Solveeit Logo

Question

Question: The lines $x + 2ay + a = 0$, $x + 3by + b = 0$, $x + 4cy + c = 0$ are concurrent then a, b, c are in...

The lines x+2ay+a=0x + 2ay + a = 0, x+3by+b=0x + 3by + b = 0, x+4cy+c=0x + 4cy + c = 0 are concurrent then a, b, c are in

A

Harmonic progression

B

Geometric progression

C

Arithmetic progression

D

Arithmetico geometric progression

Answer

Harmonic progression

Explanation

Solution

The condition for three lines A1x+B1y+C1=0A_1x + B_1y + C_1 = 0, A2x+B2y+C2=0A_2x + B_2y + C_2 = 0, and A3x+B3y+C3=0A_3x + B_3y + C_3 = 0 to be concurrent is that the determinant of their coefficients is zero: A1B1C1A2B2C2A3B3C3=0\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} = 0 The given lines are:

  1. x+2ay+a=0x + 2ay + a = 0
  2. x+3by+b=0x + 3by + b = 0
  3. x+4cy+c=0x + 4cy + c = 0

Substituting the coefficients into the determinant: 12aa13bb14cc=0\begin{vmatrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{vmatrix} = 0 To simplify, we can apply column operations. Let's perform C2C22C3C_2 \to C_2 - 2C_3: 12a2aa13b2bb14c2cc=0\begin{vmatrix} 1 & 2a - 2a & a \\ 1 & 3b - 2b & b \\ 1 & 4c - 2c & c \end{vmatrix} = 0 10a1bb12cc=0\begin{vmatrix} 1 & 0 & a \\ 1 & b & b \\ 1 & 2c & c \end{vmatrix} = 0 Now, expand the determinant along the second column: 01b1c+b1a1c2c1a1b=0-0 \cdot \begin{vmatrix} 1 & b \\ 1 & c \end{vmatrix} + b \cdot \begin{vmatrix} 1 & a \\ 1 & c \end{vmatrix} - 2c \cdot \begin{vmatrix} 1 & a \\ 1 & b \end{vmatrix} = 0 b(1ca1)2c(1ba1)=0b(1 \cdot c - a \cdot 1) - 2c(1 \cdot b - a \cdot 1) = 0 b(ca)2c(ba)=0b(c - a) - 2c(b - a) = 0 bcab2bc+2ac=0bc - ab - 2bc + 2ac = 0 bcab+2ac=0-bc - ab + 2ac = 0 Rearranging the terms, we get: 2ac=ab+bc2ac = ab + bc Assuming a,b,ca, b, c are non-zero (for the progressions to be well-defined), we can divide the entire equation by abcabc: 2acabc=ababc+bcabc\frac{2ac}{abc} = \frac{ab}{abc} + \frac{bc}{abc} 2b=1c+1a\frac{2}{b} = \frac{1}{c} + \frac{1}{a} This equation can be rewritten as: 1a+1c=2b\frac{1}{a} + \frac{1}{c} = \frac{2}{b} This is the condition for 1a,1b,1c\frac{1}{a}, \frac{1}{b}, \frac{1}{c} to be in Arithmetic Progression (AP). If the reciprocals of a set of numbers are in AP, then the numbers themselves are in Harmonic Progression (HP).