Solveeit Logo

Question

Question: The lines \(\overrightarrow{r}\)= i – j + l(2i + k) and \(\overrightarrow{r}\)= (2i – j) + m(i + j –...

The lines r\overrightarrow{r}= i – j + l(2i + k) and r\overrightarrow{r}= (2i – j) + m(i + j – k) intersect for

A

l = 1, m = 1

B

l = 2, m = 3

C

All values of l and m

D

No value of l and m

Answer

No value of l and m

Explanation

Solution

Sol. The given lines intersect, if the shortest distance between the lines is zero.

We know that the shortest distance between the lines r = a1 + (lb1{\overrightarrow{b}}_{1}) and r = a2 + lb2 is

(a1a2).b1×b2b1×b2\frac{|(a_{1} - a_{2}).b_{1} \times b_{2}|}{|b_{1} \times b_{2}|}

So the shortest distance between the given lines is zero if

(i – j – (2i – j) . (2i + k) × (i + j – k) = 0

L.H.S. = $\left| \begin{matrix}

  • 1 & 0 & 0 \ 2 & 0 & 1 \ 1 & 1 & - 1 \end{matrix} \right|$ = 1 ¹ 0

Hence the given lines do not intersect.