Solveeit Logo

Question

Question: The lines joining the points of intersection of the curve \((x - h)^{2} + (y - k)^{2} - c^{2} = 0\) ...

The lines joining the points of intersection of the curve (xh)2+(yk)2c2=0(x - h)^{2} + (y - k)^{2} - c^{2} = 0 and the line kx+hy=2hkkx + hy = 2hk to the origin are perpendicular, then

A

c=h±kc = h \pm k

B

c2=h2+k2c^{2} = h^{2} + k^{2}

C

c2=(h+k)2c^{2} = (h + k)^{2}

D

4c2=h2+k24c^{2} = h^{2} + k^{2}

Answer

c2=h2+k2c^{2} = h^{2} + k^{2}

Explanation

Solution

The line is x2h+y2k=1\frac{x}{2h} + \frac{y}{2k} = 1and circle is,

x2+y22(hx+ky)+(h2+k2c2)=0x^{2} + y^{2} - 2(hx + ky) + (h^{2} + k^{2} - c^{2}) = 0

Making it homogeneous, we get

(x2+y2)2(hx+ky)(x2h+y2k)+(h2+k2c2)(x2h+y2k)2=0\Rightarrow (x^{2} + y^{2}) - 2(hx + ky)\left( \frac{x}{2h} + \frac{y}{2k} \right) + (h^{2} + k^{2} - c^{2})\left( \frac{x}{2h} + \frac{y}{2k} \right)^{2} = 0

If these lines be perpendicular, then A+B=0A + B = 0

[11+(h2+k2c2)4h2]+[11+(h2+k2c2)4k2]=0\left\lbrack 1 - 1 + \frac{(h^{2} + k^{2} - c^{2})}{4h^{2}} \right\rbrack + \left\lbrack 1 - 1 + \frac{(h^{2} + k^{2} - c^{2})}{4k^{2}} \right\rbrack = 0

or (h2+k2c2) (h2+k24h2k2)=0(h^{2} + k^{2} - c^{2})\ \left( \frac{h^{2} + k^{2}}{4h^{2}k^{2}} \right) = 0

h2+k2=c2\therefore h^{2} + k^{2} = c^{2}.