Solveeit Logo

Question

Question: The lines <img src="https://cdn.pureessence.tech/canvas_231.png?top_left_x=1191&top_left_y=944&width...

The lines = i – j + l(2i + k) and = (2i – j) + m(i + j – k) intersect for

A

l = 1, m = 1

B

l = 2, m = 3

C

All values of l and m

D

No value of l and m

Answer

No value of l and m

Explanation

Solution

The given lines intersect, if the shortest distance between the lines is zero.

We know that the shortest distance between the lines

r = a1 + (lb1\overrightarrow { \mathrm { b } } _ { 1 }) and r = a2 + lb2 is

(a1a2)b1×b2b1×b2\frac { \left| \left( a _ { 1 } - a _ { 2 } \right) \cdot b _ { 1 } \times b _ { 2 } \right| } { \left| b _ { 1 } \times b _ { 2 } \right| }

So the shortest distance between the given lines is zero if

(i – j – (2i – j) . (2i + k) × (i + j – k) = 0

L.H.S. =

100201111\left| \begin{array} { c c c } - 1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & - 1 \end{array} \right| = 1 ¹ 0

Hence the given lines do not intersect.