Solveeit Logo

Question

Mathematics Question on 3D Geometry

The lines x22=y+22=z716\frac{x - 2}{2} = \frac{y + 2}{-2} = \frac{z - 7}{16} and x+34=y+23=z+21\frac{x + 3}{4} = \frac{y + 2}{3} = \frac{z + 2}{1} intersect at the point PP. If the distance of PP from the line x+12=y13=z11\frac{x + 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{1} is ll, then 14l214l^2 is equal to \ldots

Answer

To find the intersection point PP, parametrize both lines. For the first line:
x22=y22=z716=λ.\frac{x - 2}{2} = \frac{y - 2}{-2} = \frac{z - 7}{16} = \lambda.

This gives:
x=2λ+2,y=2λ+2,z=16λ+7.x = 2\lambda + 2, \quad y = -2\lambda + 2, \quad z = 16\lambda + 7.

For the second line:
x+34=y+23=z+21=k.\frac{x + 3}{4} = \frac{y + 2}{3} = \frac{z + 2}{1} = k.

This gives:
x=4k3,y=3k2,z=k2.x = 4k - 3, \quad y = 3k - 2, \quad z = k - 2.

At the point of intersection, the coordinates of x,y,zx, y, z must be the same for both lines.

Equating:
2λ+2=4k3,2λ+2=3k2,16λ+7=k2.2\lambda + 2 = 4k - 3, \quad -2\lambda + 2 = 3k - 2, \quad 16\lambda + 7 = k - 2.

From the first equation:
2λ+2=4k3    λ+1=2k32    λ=2k72.2\lambda + 2 = 4k - 3 \implies \lambda + 1 = 2k - \frac{3}{2} \implies \lambda = 2k - \frac{7}{2}.

Substitute λ=2k72\lambda = 2k - \frac{7}{2} into the second equation:
2(2k72)+2=3k2.-2(2k - \frac{7}{2}) + 2 = 3k - 2.

Simplify:
4k+7+2=3k2    9=7k    k=1,λ=1.-4k + 7 + 2 = 3k - 2 \implies 9 = 7k \implies k = 1, \quad \lambda = -1.

Substitute λ=1\lambda = -1 into the first line to find PP:
x=2(1)+2=0,y=2(1)+2=4,z=16(1)+7=9.x = 2(-1) + 2 = 0, \quad y = -2(-1) + 2 = 4, \quad z = 16(-1) + 7 = -9.

Thus, P(0,4,9)P(0, 4, -9).

To find the distance of P(0,4,9)P(0, 4, -9) from the line:
x+12=y13=z11.\frac{x + 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{1}.

The parametric equation of the line is:
x=2t1,y=3t+1,z=t+1.x = 2t - 1, \quad y = 3t + 1, \quad z = t + 1.

The direction vector of the line is:
d=2i^+3j^+k^.\vec{d} = 2\hat{i} + 3\hat{j} + \hat{k}.

The position vector of PP is:
p=0i^+4j^+(9)k^=4j^9k^.\vec{p} = 0\hat{i} + 4\hat{j} + (-9)\hat{k} = 4\hat{j} - 9\hat{k}.

The position vector of any point on the line is:
r(t)=(2t1)i^+(3t+1)j^+(t+1)k^.\vec{r}(t) = (2t - 1)\hat{i} + (3t + 1)\hat{j} + (t + 1)\hat{k}.

The vector joining PP and any point on the line is:
PQ=r(t)p=(2t1)i^+(3t3)j^+(t+10)k^.\vec{PQ} = \vec{r}(t) - \vec{p} = (2t - 1)\hat{i} + (3t - 3)\hat{j} + (t + 10)\hat{k}.

The perpendicular distance is given by:
l=PQ×dd.l = \frac{\|\vec{PQ} \times \vec{d}\|}{\|\vec{d}\|}.

Calculate PQ×d\vec{PQ} \times \vec{d}:
PQ×d=i^j^k^ 231 2t13t3t+10.\vec{PQ} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 2 & 3 & 1 \\\ 2t - 1 & 3t - 3 & t + 10 \end{vmatrix}.

After simplifying, the magnitude is found to be:
PQ×d=14.\|\vec{PQ} \times \vec{d}\| = 14.

The magnitude of d\vec{d} is:
d=22+32+12=14.\|\vec{d}\| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14}.

Thus:
l=1414=14.l = \frac{14}{\sqrt{14}} = \sqrt{14}.

Finally:
14l2=14(14)2=1414=108.14l^2 = 14(\sqrt{14})^2 = 14 \cdot 14 = 108.

The Correct answer is; 108