Solveeit Logo

Question

Question: The lines \(2 x - 3 y = 5\) and \(3 x - 4 y = 7\) are the diameters of a circle of area 154 square...

The lines 2x3y=52 x - 3 y = 5 and 3x4y=73 x - 4 y = 7 are the diameters of a circle of area 154 square units. The equation of the circle is.

A

x2+y2+2x2y=62x ^ { 2 } + y ^ { 2 } + 2 x - 2 y = 62

B

x2+y22x+2y=47x ^ { 2 } + y ^ { 2 } - 2 x + 2 y = 47

C

x2+y2+2x2y=47x ^ { 2 } + y ^ { 2 } + 2 x - 2 y = 47

D

x2+y22x+2y=62x ^ { 2 } + y ^ { 2 } - 2 x + 2 y = 62

Answer

x2+y22x+2y=47x ^ { 2 } + y ^ { 2 } - 2 x + 2 y = 47

Explanation

Solution

Centre of circle = Point of intersection of diameters

= (1, ­–1)

Now area =154πr2=154r=7= 154 \Rightarrow \pi r ^ { 2 } = 154 \Rightarrow r = 7

Hence the equation of required circle is

(x1)2+(y+1)2=72x2+y22x+2y=47( x - 1 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 7 ^ { 2 } \Rightarrow x ^ { 2 } + y ^ { 2 } - 2 x + 2 y = 47.