Solveeit Logo

Question

Question: The linear velocity of a rotating body is given by \(\overset{\rightarrow}{v} = \overset{\rightarrow...

The linear velocity of a rotating body is given by v=ω×r,\overset{\rightarrow}{v} = \overset{\rightarrow}{\omega} \times \overset{\rightarrow}{r}, where ω\overset{\rightarrow}{\omega} is the angular velocity and r\overset{\rightarrow}{r} is the radius vector. The angular velocity of a body is ω=i^2j^+2k^\overset{\rightarrow}{\omega} = \widehat{i} - 2\widehat{j} + 2\widehat{k} and the radius vector r=4j^3k^,\overset{\rightarrow}{r} = 4\widehat{j} - 3\widehat{k}, then v|\overset{\rightarrow}{v}| is

A

29\sqrt{29}units

B

31\sqrt{31}units

C

37\sqrt{37}units

D

41\sqrt{41}units

Answer

29\sqrt{29}units

Explanation

Solution

v=ω×r=i^j^k^122043=i^(68)j^(3)+4k^\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r} = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 1 & - 2 & 2 \\ 0 & 4 & - 3 \end{matrix} \right| = \widehat{i}(6 - 8) - \widehat{j}( - 3) + 4\widehat{k}

2i+3j+4k- 2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k}

v6mu=6mu(2)2+(3)2+42=296muunit|\overrightarrow{v}|\mspace{6mu} = \mspace{6mu}\sqrt{( - 2)^{2} + (3)^{2} + 4^{2}} = \sqrt{29}\mspace{6mu} unit